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Abstract

Fast online generation of feasible and optimal reference trajectories is crucial in tracking model predictive control,
especially for stability and optimality in presence of a time varying parameter. In this paper, in order to circumvent
the operational efforts of handling a discrete set of precomputed trajectories and switching between them, time warping
of a single trajectory is proposed as an alternative concept. In particular, the conceptual ideas of warping theory are
presented and illustrated based on the example of a tethered kite system for airborne wind energy. In detail, for warpable
systems, feasibility and optimality of trajectories are discussed. Subsequently, the full algorithm of a nonlinear model
predictive control implementation based on warping a single precomputed reference is presented. Finally, the warping
algorithm is applied to the airborne wind energy system. Simulation results in presence of real world perturbations are
evaluated and compared.

Keywords: Tracking NMPC, optimal trajectory generation, airborne wind energy, warping theory.

1. Introduction

In most industrial advanced control processes, the plant
economic optimization is typically divided into two levels:
a first level where the plant optimal steady-state opera-
tional point is computed and a second level that receives
the operational point and regulates the plant [1]. One
choice to implement the second level is nonlinear model
predictive control (NMPC) [1], a control scheme that uses
the plant model to track the operational setpoints. A vari-
ant of this algorithm is a scheme that, instead of comput-
ing and tracking a steady-state setpoint, considers a time-
varying optimal trajectory. In this scenario, if the second
level uses NMPC to track the optimized trajectory, the
resultant control scheme is referred to as tracking NMPC
[2, 3].

While stability theory for tracking NMPC has been de-
veloped [1, 4] and despite the algorithm being successfully
implemented and demonstrated in different scenarios [5–
10], it suffers from various issues. In particular, if the tra-
jectories are computed offline, the controller lacks online
adaptation to real disturbances and model mismatches.
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Moreover, even if the tracking trajectories are recomputed
online, the time required to compute a new optimal tra-
jectory introduces delays between the first and the sec-
ond level [1]; if the system has fast dynamics, these delays
prevent the first level to react in time to environmental
changes. In both scenarios, if the environmental condi-
tions change, the precomputed trajectory might no longer
be optimal nor even feasible.

A possible solution to address the mentioned problems
is economic NMPC, a type of NMPC that, instead of using
a cost function that penalizes the deviation from a track-
ing trajectory, uses a more general cost function. More
specifically, by directly optimizing the quantity that indi-
cates when a trajectory is optimal, economic NMPC has
the potential to generate online and track optimal trajecto-
ries. In practice, however, ensuring stability for economic
NMPC is harder than for tracking NMPC, and as a result,
the latter is usually a safer and more stable choice when-
ever it comes to highly nonlinear and real applications.

A field where the described problems are especially rel-
evant is airborne wind energy (AWE) [11], a novel type of
renewable energy that harvests energy from the wind using
flying kites or planes. In particular, the energy extracted
by an AWE system is dependent on its flight trajectory,
which in turn depends on the wind velocity and direc-
tion. As these two atmospheric properties might greatly
vary in the matter of seconds, any controller that aims at
optimally flying an AWE system needs to perform online
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generation of flying trajectories. Considering the models
proposed for AWE systems [12–15], they typically consist
of a state space with 4–15 states and highly nonlinear dy-
namics. As a result, to obtain optimal trajectories, com-
plex nonlinear optimization problems need to be solved
[14, 15], which not only require long computation times,
but can even lead to failures of the optimization solvers
[15]. In this scenario, both economic and tracking NMPC
have big disadvantages, i.e. the former is less stable and
the latter only tracks a suboptimal trajectory computed
offline.

In this paper, to address the mentioned problems, an
algorithm that tries to merge the benefits of economic
and tracking NMPC is proposed. In particular, warping
NMPC is presented, a control algorithm for tracking a
trajectory that is updated online to ensure that it remains
optimal.

The algorithm is based on warping theory, a framework
first presented in [16] that is based on two key concepts:
warpable systems and warpable optimal control problems.
While the theoretical foundations of the algorithm have
been presented in [16], in this paper the algorithm is ex-
tended for its implementation in a real system via three
contributions:

1. Extension of the warping NMPC concept defined in
[16] into a full algorithm that can be applied in a real
system.

2. Application of the algorithm to the simulation of a
real system, i.e. an AWE system, showing how the
control algorithm can, under real life conditions, track
optimal trajectories that change in time.

3. Explanation of the conceptual idea of warping theory.
In particular, in [16], the warping theoretical concepts
were defined. In this paper, the intuition behind the
theoretical concepts is provided and these concepts
are illustrated with explanations based on a real ap-
plication.

The paper is organized as follows: Section 2 introduces
the two main areas related to this research: AWE and
NMPC. Section 3 summarizes the warping theory pro-
posed in [16] and extends it by adding conceptual explana-
tions and examples. Subsequently, Section 4 presents the
proposed control algorithm that can be used to generate
and control optimal trajectories: warping NMPC. Finally,
Section 5 presents the performance of warping NMPC with
a real life example: the AWE kite system of the company
Skysails.

For notational simplicity, concatenations of several vec-
tors, e.g. [x>,u>]>, will be shortened as (x,u). Likewise,
the concatenation of state x and control u vectors will be
denoted by y, i.e. y = (x,u).

2. Preliminaries

In this section a brief overview of the theory that is used
and modified in this paper is provided.

2.1. Airborne wind energy

AWE is a novel type of renewable energy source that
aims at harvesting wind power without incurring the large
material costs of traditional wind turbines. In particular,
in a standard wind turbine, the bulk of the power is gen-
erated by the outer 30 % of the rotor blades and the rest
of the construction is just needed to keep these wings in
their fast crosswind motion [11]. In addition, while the
extracted power scales with the square of the height, the
mass scales cubically. As a result, the maximum size of
standard wind turbines is limited, and thus, they are not
capable of reaching and harvesting the significantly higher
wind energy potential at higher altitudes [11].

2.1.1. Operational pumping cycle

AWE tries to reduce this problem by redesigning the
turbine: it implements the rotor blades as tethered air-
foils that are anchored to the ground and fly in crosswind
motion. By doing so, it saves significant material costs,
and improves the power efficiency as the airfoils can reach
higher altitudes where wind speed is stronger and more
consistent. To harvest the wind energy, an AWE system
can use two working principles: drag or lift mode [17].
In the case of the latter, AWE uses the fact that the lift
force on an airfoil increases with the square of the ap-
parent airspeed, i.e., a kite flying in crosswind direction
with a velocity five times faster than the wind speed will
produce a force on the tethered line 25 times higher than
a static kite, to produce high tether forces that rotate a
winch with an electric generator at ground level. The op-
eration is done following a periodic cycle where the airfoil
unrolls the tether to produce energy and then rolls it back
to restart the process. This periodic cycle, usually known
as pumping cycle, is illustrated in Figure 1 and consists of
three phases:

1. Power generation phase: the airfoil flies in crosswind
motion inducing high line forces to reel out the tether
and produce energy on the ground generator.

2. Transfer phase: the airfoil flies to a neutral wind po-
sition with low line forces.

3. Return phase: the tether is reeled in and the kite is
kept at a neutral wind position so that only a fraction
of the generated energy is consumed in this phase.

2.1.2. Dynamical model

In this paper, as a case study, the model for the real
AWE system of the Skysails company is considered. This
system, which is depicted in Figure 2, is based on a flying
kite.

A model of the system was developed and validated
in [12, 18]. The model is characterized by four states
[ψ,ϕ, ϑ, l]>, two control inputs [δ, vreel]

>, and two param-
eters gk and E. In this definition, l is the tether length,
ψ, ϕ, and ϑ the angles defining the kite position and orien-
tation, δ the kite steering command, and vreel the reeling

2



2. Transfer Phase

3. Return Phase

1. Power Phase

~ex = wind direction

Figure 1: AWE system pumping cycle: a power phase where the air-
foil flies in crosswind motion to produce energy using the high tether
forces, a transfer phase to fly to a neutral wind window position, and
a return phase to restart the cycle consuming only a fraction of the
generated energy [14].
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Figure 2: SkySails kite prototype for power generation in a real flight
test [14].

tether velocity. Based on these definitions, the equations
of motion (EOM) are described as:

ψ̇ = gkvaδ + ϕ̇ cosϑ, (1a)

ϕ̇ = − va

l sinϑ
sinψ, (1b)

ϑ̇ = −vw

l
sinϑ+

va

l
cosψ, (1c)

l̇ = vreel, (1d)

with :

va = vwE cosϑ− l̇E. (1e)

where vw is the wind ambient velocity and va is the air
path velocity, i.e., the apparent wind velocity at the kite.

2.1.3. Maximizing extracted energy

Considering the described working principle, the airfoil
trajectories should be such that the generated energy in

the overall pumping cycle is maximized. However, as the
force in the tether and the generated power depends on
the wind speed, the trajectory that maximizes the energy
varies in time. As a result, to maximize the extracted en-
ergy, the airfoil controller needs to generate online optimal
trajectories and track them.

In our case study, the importance of maximizing the
extracted energy can be easily exemplified. As de-
fined by [14], the optimal periodic trajectories y∗(t) =(
x∗(t),u∗(t)

)
that maximize the average power in a pump-

ing cycle are obtained by solving the following optimal con-
trol problem (OCP):

minimize
y(·), T

J = − 1

T

∫ T

0

va(t)
2
l̇(t) dt (2a)

subject to Φ
(
x(t),u(t), vw

)
= ẋ(t), t ∈ [0, T ], (2b)

h
(
x(t), δ(t)

)
≤ 0, t ∈ [0, T ], (2c)

vmin ≤ vreel(t) ≤ vmax, t ∈ [0, T ], (2d)

x(0)− x(T ) = 0. (2e)

In the OCP above, as tether force scales with the square
of va, va(t)

2
l̇(t) in (2a) represents a quantity proportional

to the mechanical power. Furthermore, representing the
limits on the controls, the constraints of the real system
are ensured by (2c-2d). Finally, periodicity of the optimal
trajectories is guaranteed by (2e).

If this OCP is solved and the average extracted power
in a pumping cycle is computed, the power efficiency of
the optimal trajectories can be in turn compared with the
trajectories of the current controller. In particular, the
optimal trajectories have an efficiency of 35 % of the so
called Loyd limit [17], which is almost double the 18 %
efficiency obtained by the previously proposed controller
[19], i.e., optimal trajectories can extract a double amount
of energy in comparison with the current controller.

Note that, in the context of AWE, efficiency is defined as
the ratio between the extracted average power in a pump-
ing cycle divided by the maximum ideal power as defined
by Loyd [17]:

ηLoyd =
J

4
27 E

2 v3
w

, (3)

where J is defined by (2a) and the nominator is adjusted
accordingly to the AWE model [14].

2.2. Nonlinear model predictive control

Nonlinear model predictive control (NMPC) is a fam-
ily of predictive control algorithms that, by means of a
dynamical model, try to anticipate the future and to se-
lect the optimal control policy that optimizes a given cost
function. Its basic working principle is to solve an OCP
at each time iteration to obtain an optimal control trajec-
tory U∗ that ensures the system dynamics as well as other
constraints. In particular, the controller strategy can be
described as follows:
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1. First, the controller receives information regarding
the current system state x̄0.

2. Then, it solves an OCP in order to obtain the optimal
control trajectory U∗. In this scenario the decision
variables are the controls U = (u0,u1, . . . ,uN−1) and
the states X = (x0,x1, . . . ,xN ).

3. Once the OCP is solved, the algorithm applies the
first optimal control u∗0 to the system, it moves the
optimization horizon a time step forward, observes the
new state x̄0, and repeats the procedure from 1.

In the case of tracking NMPC, the cost function mini-
mizes the least squares error between the predicted trajec-
tories X and U and some reference trajectories Xr and Ur,
which are usually obtained by means of an offline OCP. In
detail, tracking NMPC solves at every iteration the follow-
ing problem:

min
X,U

N−1∑
k=0

(
‖xr,k − xk‖2Q + ‖ur,k − uk‖2R

)
+ E (xN )

(4a)

s.t. x0 − x̄0 = 0, (4b)

Φk(xk,uk)− xk+1 = 0, k = 0, . . . , N − 1, (4c)

h(xk,uk) ≤ 0, k = 0, . . . , N − 1, (4d)

r (xN ) ≤ 0, (4e)

with matrices Q > 0 and R > 0, Xr = (xr,0, . . . ,xr,N) and
Ur = (ur,0, . . . ,ur,N−1), and the equation for the system
dynamics xk+1 = Φk(xk,uk).

2.3. Numerical optimization

In order to solve the OCPs and NMPC problems de-
fined in this paper, the Casadi [20] framework for dynamic
optimization and the optimization solver IPOPT [21] are
employed.

In addition, to discretize the dynamics of the AWE sys-
tem, a direct method is used: multiple shooting [22]; fur-
ther details on how to implement this method for the con-
sidered AWE system are given in [14, 23].

3. Warping: Theory and application

In this section, the definition of the concepts that warp-
ing NMPC is based on are provided: warpable systems and
warpable optimal control problems. In order to exemplify
these concepts and provide the intuition behind them, the
flying trajectories of the AWE system are employed. A
more formal definition of warping theory is elaborated in
the appendices and in [16].

3.1. Empirical observation in optimal solutions

For the considered AWE system, if its optimal trajecto-
ries are regarded as a function of the wind speed, a very
interesting phenomenon can be observed: as depicted in
Figure 3, the periodic optimal trajectories at different wind
speeds represent the same 3D flight paths.
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Figure 3: 3D views of the optimal trajectories obtained by solving
the OCP (2a–2e) for different vw values.

However, when these trajectories are regarded in the
time domain, it can be observed how, while all optimal
trajectories make the kite fly through the same physical
locations, the velocity of the kite at each trajectory is dif-
ferent.

However, when these trajectories are regarded in the
time domain, it can be observed how, while all optimal
trajectories make the kite fly through the same physical
locations, the velocity of the kite at each trajectory is dif-
ferent. More specifically, while the trajectories are the
same, the time it takes for the kite to fly them is dependent
on the wind velocity. This effect can be further explained
looking at Figure 4, which illustrates the periodic optimal
trajectories of two of the states for different wind speeds
and in different time frames.

Indeed, if we consider the 2D optimal trajectories at
vw = 10 m/s, vw = 8 m/s, and vw = 6 m/s, we can eas-
ily show that, defining each trajectory in a different time
frame, the 3 trajectories represent the same 2D path. This
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Figure 4: Top: Optimal states ϕ and l for different vw values. Bottom: optimal states ϕ and l for different vw values but defined at three
different time frames. The optimal trajectory for vw = zm/s is defined in the time frame τz . It can be observed how the optimal trajectories
are time warped versions of each other.

concept is perfectly depicted in Figure 4: defining the op-
timal trajectory for vw = 10 m/s in a time frame τ10, and
the optimal trajectories for vw = 8 m/s and vw = 6 m/s
in the warped time frames τ8 = 10

8 τ10 and τ6 = 10
6 τ10, it

can be observed that the three trajectories are exactly the
same. In other words, warping in time the trajectories at
vw = 8 m/s and vw = 6 m/s with ratios 10

8 and 10
6 leads to

the same optimal trajectory obtained for vw = 10 m/s.

This same phenomenon, as shown in Figure 5, can also
be noticed in the inputs of the system.

0 50 100 150 200

−0.5

0

0.5

Time [s]

δ

vw = 6m/s

vw = 8m/s

vw = 10m/s

Figure 5: Optimal input δ for different vw values [16].

3.2. Conceptual idea of warping

As these trajectories are the same in the 3D space but
different in the time domain, they can be interpreted as
time warped versions of each other. In particular, an opti-
mal trajectory for a certain wind speed could be obtained
by squeezing or extending. i.e., warping in time, the opti-
mal trajectory at any other given wind speed.

This concept of translating between optimal trajectories
at different wind speeds is defined as warping. Similarly,
any dynamic system with the necessary properties to im-
plement warping will be denoted as a warpable system.
Both concepts, i.e. warping and warpable systems, will be
the key concepts of the control algorithm that is proposed.
In the following sections, the two concepts are formalized
and the intuition behind them is provided.

3.3. Warpable dynamical system

A warpable dynamical system (WDS) is any dynamical
system whose dynamics have the following structure:

ẋ(t) = p(t) f
(
x(t),u1(t)

)
+ L

(
x(t),u1(t)

)
u2(t)

= p(t) g(t) + S(t) u2(t),
(5)

where x ∈ Rm is the system state, u1 ∈ Rn1 and u2 ∈ Rn2

the system inputs, and p ∈ R a time dependent positive
parameter. Note that p(t) is assumed to be positive with-
out loss of generality as the sign of p(t) could be transferred
to g(t) and f(·).

Recalling now the EOM of the AWE kite system,
i.e. (1a–1e), it is easy to show that it is a WDS system.
In particular, substituting Equation (1e) into Equations
(1a),(1b) and (1c), (1b) into (1a), and (1d) into (1e), yields
the following equivalent EOM:

ψ̇ =vw

(
cosϑEgkδ −

E sinψ

l tanϑ
cosϑ

)
+vreel

( E

l tanϑ
− Egkδ

)
(6a)

ϕ̇ =vw
−E sinψ

l tanϑ
+vreel

E

l sinϑ
, (6b)

ϑ̇ =vw

(
− sinϑ

l
+
E cosϑ cosψ

l

)
−vreel

E cosψ

l
, (6c)

l̇ = vreel. (6d)

Therefore, the kite is a WDS with u1 = [δ], u2 = [vreel],
and p = vw.

This type of dynamical systems is interesting because of
its warping property w.r.t. the parameter p: any feasible
trajectory for a parameter value p = p1 can be warped
in time to obtain a feasible trajectory for any other pa-
rameter value p = p2. More specifically, this property al-
lows to compute a feasible solution for the general system
(5), given a feasible trajectory

(
xref(τ),u1,ref(τ),u2,ref(τ)

)
for a reference WDS system. In particular, a feasible tra-
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jectory of (5) is given by:

x(t) = xref

(
w(t)

)
, (7a)

u1(t) = u1,ref

(
w(t)

)
, (7b)

u2(t) = ẇ(t) u2,ref

(
w(t)

)
, (7c)

where w(t) is called warping factor and is defined by:

ẇ(t) =
dτ

dt
=
p(t)

pref
(8)

Formally, this property is defined by Lemma A1 in Ap-
pendix A. The interpretation behind the lemma is simple:
all feasible trajectories of WDS are equal to each other but
defined in different time frames. The relation between any
of these trajectories is simply computed by the warping
factor w(t), which represents the relation between the ve-
locities of the dynamics dt and dτ in the different frames.
The exception to that rule is the u2 subset of inputs, which
not only is warped in time, but also amplified or attenu-
ated to account for the p(t)-independence of the second
term of Equation (5). Note that (7c) can be given as
u2(t) = u2,ref(τ)p(t)/pref

In the AWE system, the wind velocity vw is the warp-
ing parameter, and thus, it determines the speed of the
system dynamics and the relation between feasible trajec-
tories. This effect, formalized by the EOM and Lemma
above, is actually what was shown in Figures 4 and 5,
where trajectories at different wind speeds had the same
3D trajectory at different time scales.

In this example, note the effect that warping has on the
control vreel, which, as defined by (7c), not only is warped
but also attenuated or amplified. This transformation can
be observed in Figure 6, which extends the warping sce-
nario of Figures 4–5 to the control vreel.
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Figure 6: Optimal input control vreel for different vw values [16].

3.4. Preservation of optimality in warping

As it will be explained in Section 4, the basic idea of
the proposed controller is to compute one reference trajec-
tory for a reference parameter pref , and apply the warping
transformation to adapt the tracking trajectory to the time
varying parameter p(t). As a result, when warping trajec-
tories, not only feasibility is important but also maintain-
ing optimality is highly desirable.

3.4.1. Warpable optimal control problems

In the context of warping, it can be shown that optimal-
ity is maintained if the warped trajectory is the solution
of a Warpable Optimal Control Problem (WOCP):

WOCP(p):

min
y(·), T

∫ T

0

L1(p)L2

(
x(t),u1(t),

u2(t)

p

)
dt (9a)

s.t. pg(t) + S(t) u2(t) = ẋ(t), t ∈ [0, T ], (9b)

h
(
x(t),u1(t)

)
≤ 0, t ∈ [0, T ], (9c)

r
(
x(0),x(T )

)
≤ 0. (9d)

In this case, due to the absence of u2 constraints and the
structure of the objective function, optimal solutions y∗(t)
for any parameter p can be obtained by warping an opti-
mal solution y∗ref(t) computed for a reference parameter
pref . This very interesting property is formally defined by
Theorem B1 in Appendix B.

3.4.2. Semi-warpable optimal control problems

While the solutions of WOCPs preserve optimality, the
WOCP structure has a big limitation: u2 cannot be con-
strained. In terms of the AWE system, this implies that
the optimal trajectories cannot bound the reeling speed
[vreel] = u2; that is obviously not possible as the trajec-
tories have to ensure that vreel remains within the safety
bounds.

This problem can be better understood regarding
Fig. 6 displaying the optimal trajectories at different wind
speeds: if the trajectory at pref = 6 m/s is taken as a ref-
erence, the warping transformation for p = 8 m/s would
generate the shown graph for 8 m/s. Indeed, as the op-
timal trajectory at 8 m/s does not reach the bounds for
vreel, the warped trajectory is exactly equal to the opti-
mal one. However, the same does not hold for the trajec-
tory at p = 10 m/s; particularly, as observed from Fig. 6,
the optimal trajectory at p = 10 m/s reaches the −5 m/s
bound of vreel. Therefore, in this case, if the trajectory
at pref = 6 m/s is warped, the warped trajectory would
contain vreel values that would violate the u2 constraint
vreel ≥ −5 m/s (note that the control vreel is limited at
−5 m/s).

Semi-Warpable Optimal Control Problem (SWOCP) is
a class of OCPs that solve this issue by generalizing the
WOCP structure to the case of having u2 path constraints:

SWOCP(p):

WOCP(p) (10a - 10d)

h2

(
x(t),u1(t),u2(t)

)
≤ 0 t ∈ [0, T ] (10e)

For a more detailed and formal definition of SWOCPs we
refer to Appendix B.2.
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The key distinction w.r.t. to an WOCP is that, by
adding the u2-dependent constraints, warped trajectories
might no longer satisfy the path constraints of the OCP:

h2

(
x∗ref(τ),u∗1,ref(τ),u∗2,ref(τ)

)
≤ 0

=⇒ h2

(
xp(t),up1(t),

pref

p
up2(t)

)
≤ 0

6=⇒ h2

(
xp(t),up1(t),up2(t)

)
≤ 0. (11)

Based on the observation above, the natural question that
arises is then: if warping might violate the path con-
straint, how can warping preserve optimality for SWOCP-
generated trajectories? The answer to that question are
best warpable references.

3.4.3. Best warpable references

Given the optimal solution y∗bwr(t) of a SWOCP(pbwr),
i.e. a SWOCP defined for a reference parameter pbwr,
y∗bwr(t) is defined to be a best warpable reference (BWR)
if all the warped trajectory of y∗bwr(t) satisfy the u2-
dependent constraints of the SWOCP.

A very interesting property of BWRs is that, provided
that a BWR exist for a given SWOCP and that the
u2-dependent constraints are inactive at the BWR, the
BWR can be regarded as an optimal reference trajectory.
More specifically, any warped trajectory yp(t), obtained
by warping the optimal solution y∗ref(τ) of the reference
SWOCP(pref)=SWOCP(pbwr), is also an optimal solution
of the general SWOCP(p).

This interesting property is formally defined in Corollary
B1 of Appendix B. Similarly, BWRs are formally defined
in Definition B2 of the same appendix.

When considering this property, it is also necessary
to analyze the implications of having u2-dependent con-
straints that are active at the BWR. In particular, if h2

is active for pbwr, i.e. h2

(
ybwr(τ)

)
= 0, the warped tra-

jectories yp(t) are usually suboptimal. In this case, since
they are still feasible and are generated from an optimal
trajectory, they still represent a better solution than a ran-
dom feasible trajectory. This issue is illustrated in Figure
7, where a warped trajectory obtained from the BWR is
compared to the optimal trajectory v∗reel at vw = 6 m/s.
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BWR: v∗
reel at vw = 10m/s
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Warped v∗
reel at vw = 6m/s

Figure 7: Comparison between optimal vreel and suboptimal vreel
computed from a BWR (Note that vw,max = 10 m/s is assumed in
this case).

For the proposed algorithm, the above property has a
very important implication: if computation of a BWR is

possible, the BWR can be used as a reference trajectory
to generate optimal or suboptimal trajectories for any pa-
rameter p. As shown in Theorem B2 of Appendix B, there
are some ways to compute BWRs. For our case study, it
is only important to know the following one: if the path-
constraint h2

(
x(t),u1(t),u2(t)

)
can be reformulated as:

flower

(
x(t),u1(t)

)
≤ u2(t) ≤ fupper

(
x(t),u1(t)

)
,

where : flower(x,u1) ≤ 0, fupper(x,u1) ≥ 0.
(12)

the solution of SWOCP(pmax), i.e. the SWOCP version
where the parameter p is at its maximum value, is a BWR.
A formal proof of this property is given by Theorem B2 in
Appendix B.

3.4.4. Optimality of AWE trajectories

Using the above properties and definitions, it can be
shown that optimality is preserved when warping the tra-
jectories of the AWE system. In particular, recalling (2)
as the OCP that optimized the flying trajectories, (1e) can
be used to expand the cost function as:

J =− 1

T

∫ T

0

v2
a l̇ dt = − 1

T

∫ T

0

(
vw E cosϑ− vreelE

)2
vreel dt

=− v3
w

T

∫ T

0

(
E cosϑ−

(
vreel

vw

))2(
vreel

vw

)
dt (13)

Considering this reformulation and (2a–2e), it is clear that
the flying trajectories are solutions of a SWOCP. Then,
since (2d) has the structure of (12), a BWR is given by
the OCP solution at the maximum wind speed vw.

4. Warping NMPC

Once the theoretical foundations of warping are defined,
warping NMPC can be finally introduced. Within the
algorithm, two different control applications will be dis-
tinguished: tracking of general feasible trajectories and
tracking of optimal trajectories.

4.1. Generation of feasible trajectories

In its first variant, warping NMPC uses a feasible trajec-
tory for a reference parameter pref as a reference trajectory
yref(τ). In particular, at each iteration, it reads from the
environment the p(t) value. Based on it, it warps yref(τ)
to obtain a feasible trajectory yp(t) for the p(t) value. Fi-
nally, it updates the tracking trajectory with yp(t).

Figure 8 illustrates this concept: yref , feasible for a con-
stant pref , is computed offline. Then, by time warping
yref online, warping NMPC generates a feasible track-
ing trajectory for the real p(t). In a computer imple-
mentation, a discrete precomputed reference trajectory
Yref = (yref,0, . . . ,yref,N ) is used to obtain the discrete
tracking trajectory at the current time Ytrack = (ytrack,0,
. . . , ytrack,N ).
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4.2. Generation of optimal trajectories

In a second and third variants, warping NMPC extends
the case of tracking feasible trajectories to tracking op-
timal trajectories. In particular, to ensure that tracking
trajectories are optimal, the new NMPC scheme follows
the procedure described for feasible trajectories, but com-
puting the reference trajectory yref(τ) in a very distinct
manner. In particular, to obtain yref(τ), it considers one
of two possibilities:

1. Computing yref(τ) as the solution of a WOCP(p),
i.e. yref(τ) = y∗ref(τ). In that case, due to the property
of WOCPs, any tracking trajectory yp(t) obtained
from warping y∗ref(τ) will also be optimal.

2. Computing yref(τ) as the BWR of a SWOCP(p),
i.e. pref = pbwr. In this case, as explained in Section
3.4.3, the warped tracking trajectories yp(t) will be
either optimal or suboptimal depending on whether
h2(·) is inactive or active at yref(τ).

4.3. Algorithm

Whether the algorithm uses the variant defined in Sec-
tion 4.1 or one of the two variants defined in Section 4.2, its
implementation is the same. In particular, in a computer
implementation, warping NMPC uses the same scheme as
a traditional tracking NMPC, but updates the tracking
trajectory Ytrack in a different manner.

4.3.1. Traditional shifting

A classical tracking NMPC scheme updates the tracking
trajectory Ytrack at each iteration by shifting one time step
backwards the latest Ytrack and adding a new point ynew

at the end of it. To compute ynew, the NMPC regards
a fixed reference trajectory Yref = (yref,0, . . . ,yref,M ) de-
fined in a fixed reference time grid tref = [tref,0, . . . , tref,M ].
Then, defining the ∆t in the reference time grid as the ∆t
of the NMPC, ynew is simply selected from Yref . The

following equations illustrate the update:

tk : Ytrack,k = (yref,k, yref,k+1, . . . , yref,k+N)

tk+1 : Ytrack,k+1 = (yref,k+1, . . . ,yref,k+N, ynew)

with :

ynew = yref,k+1+N

(14)

This type of update, i.e. just updating the last value of
Ytrack and shifting the others, is done to avoid big changes
on the optimization problem, and in turn, to improve the
stability of the NMPC.

4.3.2. Shifting in Warping NMPC

In order to preserve this stability property in the pro-
posed warping NMPC, Ytrack is also updated with this
shifting scheme. However, instead of using a fixed refer-
ence trajectory in a fixed time frame and directly select-
ing ynew from it, the new scheme uses a reference trajec-
tory Yref = (yref,0, . . . ,yref,M ) in a reference time grid
τref = [τref,0, τref,1, . . . , τref,M ] and selects ynew by finding
the relation between τref and the real time grid t. In this
context, the real time grid t = [t0, . . . , tM ] represents the
sampling interval of the real-time operational controller,
and τref represents a warped version of t.

Defining the controller sampling time as ∆t, the time
point at the end of the NMPC horizon by tN , the equiva-
lent point of tN in the warped time frame τref by τN , and
considering a NMPC horizon of N+1 points, the algorithm
to update ynew consists of five steps:

1. The algorithm reads the new value of p.

2. The algorithm uses a continuous time variable τtrack

to track τN . To do so, τtrack is updated at each it-
eration by increasing its value by a warped time step
∆τ = ∆t p

pref
.

3. As tN represents the time location of ynew in the real
time grid, τtrack represents the time location of ynew

in the warped time grid τref . Therefore, ynew is up-
dated by finding τtrack in τref , and interpolating Yref

accordingly.

4. The control u2 of ynew is attenuated/amplified in or-
der to fulfill the warping equivalence between Yref and
Ytrack.

5. The new Ytrack is built by shifting the previous Ytrack

and adding ynew at the end.

This algorithm is represented in Algorithm 1 and illus-
trated in Figure 9. An important fact is that the trajectory
adaptability to the changes on p(t) have a delay equal to
the NMPC horizon length. However, for many applica-
tions, this is rarely a real problem due to the short NMPC
horizons.

4.4. Implementation Details

In order to implement the described algorithm, there
are two implementation details that have to be taken into
account:
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Algorithm 1 Warping NMPC

1: function updateTrackingTrajectory(Ytrack)
2: . Update warping parameter p

3: p← readLatestMeasurement()
4: . Compute warped time step

5: ∆τ ← ∆t p
pref

6: . Update tracking variable

7: τtrack ← τtrack + ∆τ
8: . Generate next tracking point

9: ynext ← nextTrackingPoint(τtrack, p)
10: . Update tracking trajectory

11: Ytrack ← shiftAndAdd(Ytrack, ynext)
12: return Ytrack

13: end function
14:

15: function nextTrackingPoint(τnext, p)
16: . Compute closest past reference point

17: τpast ← arg min
τ

|τ − τnext|,
18: s.t. τ ≤ τnext, τ ∈ τref

19: ypast ← yref(τpast),
20: . Compute closest future reference point

21: τfuture ← arg min
τ

|τ − τnext|,
22: s.t. τ > τnext, τ ∈ τref

23: yfuture ← yref(τfuture)
24: . Interpolate

25: ynext ← ypast +
yfuture−ypast

τfuture−τpast
(τnext − τpast)

26: . Attenuate controls u2

27: ynext(u2)← ynext(u2) p
pref

28: return ynext

29: end function
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ynext

ypast

yfuture

∆t
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τtrack τtrack +∆τ

t

Ytrack,k - tracking trajectory at time tk

Yref - discrete reference trajectory

- interpolated reference trajectory

ynext - point added to the tracking trajectory

Ytrack,k+1 - tracking trajectory at time tk+1

Figure 9: Warping NMPC shifting strategy for y = [y] ∈ R1: τtrack is
used to follow the last point of Ytrack within the reference trajectory
yref .

4.4.1. Trajectory Discretization

While all the mathematical proofs have been given for
continuous time trajectories, the implementation of the
algorithm is done in discrete time. Particularly, the tra-
jectories employed by the algorithm are obtained by inter-

polating between the values of the continuous trajectories
at a predefined discrete time grid. As a result, the tra-
jectories employed by the algorithm are approximations of
the continuous counterparts.

To ensure that the properties of optimality and feasi-
bility of the continuous case are preserved in the discrete
case, i.e. to ensure that the discretized trajectory accu-
rately approximates the continuous one, the NMPC algo-
rithm should employ a small enough sampling time ∆t.
Particularly, the implementation of the algorithm should
ensure that ∆t << τref,M , with τref,M defining the time
duration of the reference trajectory.

The exact relation between ∆t and τref,M that guaran-
tees a good approximation will obviously depend on the
application. For the case study presented in this paper,
i.e. an AWE system, we show that 2000 ∆t ≈ τref,M is
small enough to ensure that the discrete trajectories accu-
rately approximate the continuous ones. Particularly, as
we will show in the next section, considering a sampling
time ∆t = 100 ms for a τref,M ≈ 200 s, the discrete ref-
erence trajectory can be warped in time and still ensures
feasibility and optimality.

4.4.2. Measuring p(t)

The parameter p(t) is arguably the most important pa-
rameter in the proposed algorithm. Particularly, as p(t)
determines the warping relation, it is paramount to have
p(t) measurements updated fast enough so that the warped
trajectories that the NMPC tracks stay feasible/optimal.

In particular, in order to guarantee that the warped tra-
jectories remain optimal and feasible, the measurement in-
terval of p(t) should be lower than the sampling time ∆t
of the controller.

5. AWE System Control via Warping NMPC

The proposed algorithm can now be used to control the
AWE system, which needs to track optimal trajectories
that change as a function of the wind speed. However,
before implementing the algorithm, it needs to be en-
sured that the system satisfies the requirements of warping
NMPC, i.e. that the kite is a WDS and that the system’s
optimal trajectories are the solution of a SWOCP.

As defined in Section 3.3, the kite is a warpable system
with u1 = [δ], u2 = [vreel], and p = vw. In particular, the
wind velocity vw is a warping parameter that determines
the speed of the system dynamics. Moreover, as defined in
Section 3.4.4, the optimal trajectories are the solution of a
SWOCP. In particular, a BWR can be computed using the
maximum vw-value (15 m/s in our real system). Based on
these results, warping NMPC can indeed be used to per-
form online generation and tracking of optimal trajectories
by using the BWR as the reference trajectory.

5.1. Efficiency of BWR

As a first step before implementing warping NMPC, the
efficiency quality of the considered BWR needs to be eval-
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uated. In particular, since at the optimal solution y∗ref

for vw = 15 m/s the constraint (2d) is active, the warped
tracking trajectories are suboptimal (refer to Section 3.4.3
and the remark of Corollary B1). Therefore, to evaluate
the decrease in optimality of when using warped trajecto-
ries, Table 1 compares the power efficiency (as given by
(3)) of optimal trajectories at different p = vw values with
respect to their warped counterparts.

Table 1: Efficiency comparison of optimal solutions and trajectories
obtained by warping.

vw 6 m/s 8 m/s 10 m/s 12 m/s 14 m/s 15 m/s

ηLoyd

optimal
35.4 % 35.4 % 35.3 % 34.9 % 34.2 % 33.7 %

ηLoyd

warping
33.7 % (all wind speeds)

Considering that explicitly solving the SWOCP for dif-
ferent vw values leads only to a maximum efficiency in-
crease of less than 2%, the warped trajectories represent
a very good approximation of their optimal counterparts.
Therefore, it can be concluded that, in theory, warping
NMPC is a highly efficient algorithm for online generation
of nearly optimal trajectories for the AWE system.

5.2. Implementation

After proving that the kite is a warpable system and
that optimal (flying) trajectories can be obtained by warp-
ing, the proposed warping NMPC can be implemented in
the AWE system. To evaluate the performance of the al-
gorithm, the study will be divided into two parts: first,
the controller will be analyzed using a simulator that re-
gards the wind velocity as the only disturbance; this study
provides the ideal improvements that can be obtained with
the proposed controller. Then, in a second step, the analy-
sis will be repeated considering a real plant simulator that
includes all the real life disturbances; this second study
provides the real improvements that can be obtained with
the controller in real life conditions.

5.2.1. Initial assessment

As first assessment, the controller is tested under the
assumption that wind velocity is the only disturbance. In
particular, as depicted in Figure 10, a realistic wind speed
profile that drops in 25 minutes from 10 m/s to 6 m/s is
considered.

0 5 10 15 20 25
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v
w
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/
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Figure 10: Considered wind profile.

Using the above profile, warping NMPC is compared
against a normal tracking NMPC scheme that uses a con-
stant tracking trajectory generated at vw = 10 m/s. In
particular, in order to evaluate the difference in perfor-
mance when the wind speed is different from the one used
when computing the reference trajectory, the two control
schemes are evaluated at the end of wind speed profile
interval (vw ≈ 6 m/s).

The comparison is illustrated in Fig. 11, which depicts
the 3D pumping cycle trajectories at the end of the simu-
lation interval, and Table 2, which compares the efficiency
of the two control schemes in the last pumping cycle.

Table 2: Efficiency comparison between warping and tracking NMPC
under the assumption that wind velocity is the only disturbance.

NMPC Scheme ηLoyd

Tracking NMPC -2.09 %

Warping NMPC 31.57 %
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Tracking NMPC

Figure 11: Comparison between normal NMPC and warping NMPC
for vw = 6 m/s in simulation environment.

As it can be observed, the tracking NMPC scheme,
which is based on a constant trajectory generated at
vw = 10 m/s, is unable to track the reference trajectory
and extract energy (indicated by a negative Loyd factor
ηLoyd = −2.09%). In particular, it keeps the kite at a
high elevation angle and barely performs any movement.
By contrast, the warping NMPC reaches power efficiencies
(ηLoyd = 31.57%) very close to the ideal one by adaptation
to the varying wind speed vw. Therefore, from these initial
results, it seems clear warping NMPC has the potential to
greatly improve the efficiency of the AWE system.

5.2.2. Realistic plant simulator

To verify the results of the previous experiments, the
analysis is repeated using a realistic plant simulator. In
particular, the plant simulator developed by Skysails and
whose equations of motion have been empirically validated
with real flight data is employed. This plant simulation
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extends the wind speed disturbances to a complete set
of real flight disturbances. In particular, considering the
different effects observe in real flight conditions, the plant
simulator includes the following disturbances:

1. Parameter mismatches to model that in real condi-
tions the glide ratio E and the steering constant gk

are not the ideal estimated parameters.

2. A wind direction profile using real wind data.

3. An offset error on the control δ.

4. A realistic observer that makes estimation errors.

5. A delay between the steering command δ and its in-
fluence on the dynamic.

As before, the considered wind profile is the same as
depicted in Figure 10, i.e., a realistic wind speed profile
that drops in 25 minutes from 10 m/s to 6 m/s. Likewise,
the two control schemes are evaluated at the end of wind
speed profile interval. The results are first listed in Table
3 where the efficiency of the two control schemes is com-
pared. In addition, the 3D trajectories are again depicted
in Figure 12.

Table 3: Warping NMPC comparison considering a nominal wind
speed profile decrease from 10 m/s to 6 m/s.

NMPC Scheme ηLoyd

Tracking NMPC -3.41 %

Warping NMPC 30.47 %
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Figure 12: Comparison between normal NMPC and warping NMPC
in a real plant simulator.

Considering the obtained results, the following observa-
tions can be made:

1. As before, due to the disturbances, tracking NMPC is
unable to harvest any energy, i.e. it displays a negative
efficiency.

2. By contrast, warping NMPC obtains an efficiency of
30.47 %, which is very close to the ideal one obtained
in the first assessment.

3. Warping NMPC not only obtains a good efficiency,
but it is also able to keep the flying trajectories very
close to the optimal one. In particular, by compar-
ing Figures 11 and 12 it can be observed that, while
the real trajectories are now not as perfect as in the
first assessment, warping NMPC manages to fly stable
trajectories similar to the optimal ones despite being
under real life disturbances.

Finally, to provide a more complete set of results, the
comparison between tracking and warping NMPC in terms
of the flying trajectories as a function of time is also in-
cluded. In particular, Figure 13 compares the flying tra-
jectories of the state angles [ψ,ϕ, ϑ]> for the two control
schemes at the end of the wind profile interval. By observ-
ing the tremendous difference of performance in the three
cases, it can be confirmed once again the importance of us-
ing warping NMPC in order to fly stable trajectories and
to maximize the extracted energy.

5.3. Discussion

Considering the obtained results, there are 3 key topics
that need further discussion: 1) the stability and efficiency
of the proposed algorithm; 2) the effect of varying wind
speeds within a single time period; 3) the computation
time requirements of the proposed algorithm.

5.3.1. Stability and Efficiency

When looking at the obtained results, it is clear that
the proposed algorithm provides significant gains for the
AWE system under study. In particular, while a regular
version of tracking NMPC is unstable and unable to track
flying trajectories, the proposed NMPC scheme can track
optimal trajectories without any major issue.

Moreover, while the traditional tracking NMPC scheme
is unable to harvest wind energy, the proposed scheme is
able to harvest a significant amount of wind energy and
obtain a Loyd efficiency that is very close to the maximum
theoretical optimal efficiency.

5.3.2. Varying Wind Speeds

When analyzing the proposed algorithm, it is clear that
one of its underlying assumptions is to consider a con-
stant wind velocity during a time period. In particular,
the tracking trajectory of the NMPC scheme is continu-
ously updated considering the last position of the AWE
system and the latest measurement of the wind speed. If
the wind velocity does not change within a time period,
this tracking trajectory is then guaranteed to be optimal.

As wind speed changes within a time period, a natural
question to ask is whether the controller remains stable
under this varying conditions and whether the trajectories
remain optimal despite the changing wind speed.

From a stability point of view, it is clear that the algo-
rithm can handle varying wind speeds. This can be shown
considering the obtained results as, using a real simula-
tor and varying wind conditions, the proposed algorithms
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Figure 13: Comparison between tracking and warping NMPC in terms of the trajectories of ψ, ϑ, and ϕ on the time domain. Left: tracking
NMPC. Right: warping NMPC.

keeps the AWE system stable and is able to track the tra-
jectories without any issues.

From the point of view of optimality, it can be argued
that the algorithm cannot track perfectly optimal trajec-
tories as the assumption of constant wind speed does not
hold. However, considering the stochastic nature of the
wind speed, it can also be argued that assuming con-
stant wind velocity is one of the best assumptions that can
in practice be made to obtain optimal tracking trajecto-
ries. Moreover, considering that optimal trajectories have
a Loyd efficiency of 33.7 % and the proposed algorithm
obtains (under real simulated conditions) an efficiency of
30.47 %, it can further be argued that, while the tracking
trajectories are not optimal, they are good enough for the
controller to have a nearly optimal efficiency.

5.3.3. Computation Time

One of the critical implementation considerations when
using the proposed controller is whether its computation
requirements are small enough for a real-time controller.
Particularly, if a single algorithm iteration requires longer
computation times than the controller sampling time, the

proposed algorithm would not be suitable for running in
real-time.

As warping is simply a scaling operation, its compu-
tation time is negligible compared to a NMPC iteration.
Moreover, as the tracking NMPC solves a quadratic prob-
lem, the total computation time of a single iteration is
much lower than the controller sampling time. In particu-
lar, using a standard 2016 laptop with an Intel i7-6920HQ
CPU (quad core CPU with 2,9 GHz base frequency) and 16
GB of RAM, the iteration time is around 10 ms. Consider-
ing that the controller of the AWE system uses a sampling
time of 100 ms, the proposed algorithm is suitable to run
in real-time as the operational controller.

6. Conclusion

In this paper, the ideas of warping theory have been ap-
plied in order to build a NMPC algorithm that is able to
perform online generation and tracking of optimal trajec-
tories.

The algorithm, which is called warping NMPC, has been
successfully implemented in the simulation framework of
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a real airborne wind energy (AWE). In particular, the sys-
tem under study has optimal trajectories that depend on
the wind velocity vw. As a result, to fly optimal trajec-
tories and maximize the extracted energy, the control al-
gorithm needs to re-adapt the flying trajectories in real-
time. In this context, it has been shown how, using warp-
ing NMPC, the AWE system could keep the flying trajec-
tories optimal, and in turn, double the extracted energy
when compared with the previously proposed controller.
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Appendix A. Warping Theory

In this appendix, the conceptual explanations given in
Section 3 are extended. In particular, the formal definition
of the family of dynamical systems that can use warping
is provided and a simple illustrative example is given. As
it will be shown, the AWE system under study belongs to
this class of systems, i.e. warpable systems. To formally
define them, the notion of warped times frames needs to
be first introduced.

Appendix A.1. Warped Time Frame τ

Consider a real time frame t which is used to describe
any motion of a dynamical system. A warped time frame τ
with respect to t can be defined by formulating the relation
between the time velocities dt and dτ in both frames. This
relation is called warping factor ẇ(t) and is defined as:

dτ

dt
= ẇ(t),

with ẇ(t) > 0, dt > 0 and dτ > 0. It is important to note
that time transformations from t to τ can be computed by
τ = w(t) =

∫ t
0
ẇ(t′)dt′. Likewise, τ can be warped back

to obtain t by using dt
dτ = 1

ẇ(t) , i.e. the warping operation

is bidirectional. According to these definitions, time is a
strictly positive monotonic function, i.e. t and τ = w(t)
must be strictly positive monotone.

Figure A.14 exemplifies the relation between t and τ for
different warping factors. In particular, the blue line rep-
resents the case where ẇ(t) is constant and bigger than
one which leads to a motion in the time frame τ relatively
faster than in t. In contrast, the red line represents the op-
posite behavior, i.e. ẇ(t) is still constant but the motion
in t is now faster than in τ . Finally, the yellow line illus-
trates a general case where the warping factor varies as a
function of time and the time variation in t with respect
to τ is not constant.
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ẇ(t

′ )dt
′

t [s]

τ
[s

]

Figure A.14: Warping factor and time variation in time frames τ, t

Appendix A.2. Warpable Dynamical System

Regard a general dynamical system defined by the EOM
ẋ(t) = Φ(x(t),u(t), p(t), t), with t representing the time,
x ∈ Rm the system state, u ∈ Rnu the system input,
and p ∈ R the time dependent parameters. The system is
defined as a warpable dynamic system if the EOM can be
expressed as:

ẋ(t) = p(t) f
(
x(t),u1(t)

)
+ L

(
x(t),u1(t)

)
u2(t)

= p(t) g(t) + S(t) u2(t),
(A.1)

with : p(t) ∈ R, u(t) =
(
u1(t),u2(t)

)
∈ Rn1+n2 ,

f : Rm+n1 −→ Rm, L : Rm+n1 −→ Rm×n2 .

Lemma A1. (Time Warped Dynamical System). Given
the solution

(
xref(τ),u1,ref(τ),u2,ref(τ)

)
for a refer-

ence system:

ẋref(τ) = pref f
(
xref(τ),u1,ref(τ)

)
+ L

(
xref(τ),u1,ref(τ)

)
u2,ref(τ)

= pref gref(τ) + Sref(τ) u2,ref(τ),

(A.2)

a solution for the general system (A.1) is given by:

x(t) = xref

(
w(t)

)
, (A.3a)

u1(t) = u1,ref

(
w(t)

)
, (A.3b)

u2(t) = ẇ(t) u2,ref

(
w(t)

)
, (A.3c)

where the warping factor between t and τ is defined by:

ẇ(t) =
dτ

dt
=
p(t)

pref
and w(t) =

∫ t

0

p(t′)
pref

dt′ = τ. (A.4)

Note 1: without loss of generality, the initial condition
x(0) = xref(0) is assumed.
Note 2: a trajectory is assumed to be feasible as long as it

respects the system dynamics, i.e. bounded trajectories are
not considered.

Proof.

ẋ(t)
(A.3a)

=
dxref

dτ

∣∣∣
τ=w(t)

ẇ(t)

(A.2)
= ẇ(t) pref f

(
xref

(
w(t)

)
,u1,ref

(
w(t)

))
+ L

(
xref

(
w(t)

)
,u1,ref

(
w(t)

))
ẇ(t) u2,ref

(
w(t)

)
(A.3a-A.3c)

=
(A.4)

p(t) f
(
x(t),u1(t)

)
+ L

(
x(t),u1(t)

)
u2(t).

(A.5)

Appendix A.3. Warping Interpretation

Time warping is a change on the velocity of the dynam-
ics that bring a system to a different time frame. In this
new time frame τ = w(t), the ratio ẇ(t) between p(t) and
pref (ratio between dτ and dt) would characterize the ratio
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of the time velocities of the two time frames. An example
of a motion in warped time frames can be given by the
following system:[

ẋ1(t)
ẋ2(t)

]
= Ω(t)

[
0 1
−1 0

] [
x1(t)
x2(t)

]
(A.6)

Considering Ω(t) = 1 and x(0) = [1, 0]>, the solution
reads x2(t) = sin(t). Warping this solution with ẇ(t) =
1/Ω2, a trajectory x2(τ) = sin(τ) in a time frame τ = t/Ω2

is obtained. Figure A.15 depicts these two trajectories for
the case of Ω2 = 2.
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Figure A.15: Warping of a sin trajectory with ẇ(t) = 1
2

.

In this warped time frame, u2,ref(τ) = u2(t)pref/p(t) is
the set of inputs that not only have to be warped in time,
but also amplified or attenuated to account for the p(t)-
independence of the second term of Equation (A.1).

Appendix B. Optimality Preservation in Warping

In Appendix A, the notion of warped time frames,
warpable systems, and warping trajectories was intro-
duced. In this appendix, the theoretical foundations that
explain that, for specific scenarios, warping preserves op-
timality are then presented.

Appendix B.1. Warpable Optimal Control Problem

Regard a general Optimal Control Problem (OCP) de-
fined in a time frame t:

min
y(·), T

J
(
y(t)

)
=

∫ T

0

L
(
x(t),u(t), p(t)

)
dt (B.1a)

s.t. Φ
(
x(t),u(t), p(t)

)
= ẋ(t), t ∈ [0, T ], (B.1b)

h
(
x(t),u(t)

)
≤ 0, t ∈ [0, T ], (B.1c)

r
(
x(0),x(T )

)
≤ 0, (B.1d)

with

y(t) = (x(t),u(t)). (B.1e)

The general OCP is defined to be a Warpable Optimal
Control Problem (WOCP) if it holds that:

1. The dynamical system of the OCP is warpable:

Φ(·) = p(t) f
(
x(t),u1(t)

)
+ L

(
x(t),u1(t)

)
u2(t).

(B.2a)

2. p(t) ∈ R++ is constant in the time interval [0, T ].

3. The path constraints are independent of u2(t):

h
(
x(t),u(t)

)
= h

(
x(t),u1(t)

)
. (B.2b)

4. The cost of the OCP can be written as:∫ T

0

L1(p)L2

(
x(t),u1(t),

u2(t)

p

)
dt. (B.2c)

In this case, a WOCP is equal to:

WOCP(p):

min
y(·), T

∫ T

0

L1(p)L2

(
x(t),u1(t),

u2(t)

p

)
dt (B.3a)

s.t. pg(t) + S(t) u2(t) = ẋ(t), t ∈ [0, T ], (B.3b)

h
(
x(t),u1(t)

)
≤ 0, t ∈ [0, T ], (B.3c)

r
(
x(0),x(T )

)
≤ 0. (B.3d)

Theorem B1. (Optimality of Warpable Dynamical Sys-
tems). Regard the WOCP in a reference time frame:

min
yref(·), τ̄

∫ τ̄

0

L1(pref)L2

(
xref(τ),u1,ref(τ),

u2,ref(τ)

pref

)
dτ

(B.4)

s.t.

pref gref(τ) + Sref(τ) u2,ref(τ) = ẋref(τ), τ ∈ [0, τ̄ ],

h
(
xref(τ),u1,ref(τ)

)
≤ 0, τ ∈ [0, τ̄ ],

r
(
xref(0),xref(τ̄)

)
≤ 0.

Given the optimal solution of the reference problem:

y∗ref(τ) =
(
x∗ref(τ),u∗1,ref(τ),u∗2,ref(τ)

)
, (B.5)

then, the warped trajectory of y∗ref(τ):

yp(t) =
(
xp(t),up1(t),up2(t)

)
, (B.6)

with constant warping factor:

ẇ(t) =
p

pref
= ẇ, (B.7)

and with warping transformations defined by (A.3a–A.3c),
is the optimal solution of (B.3), i.e.:

xp(t) := x∗ref

(
w(t)

)
= x∗(t), (B.8a)

up1(t) := u∗1,ref

(
w(t)

)
= u∗1(t), (B.8b)

up2(t) := u∗2,ref

(
w(t)

)
ẇ= u∗2(t). (B.8c)

Note that, since the warping factor is time independent,
time warping becomes a linear transformation:

τ =

∫ t

0

p

pref
dt′ =

p

pref
t =⇒ τ̄ = w(T ) =

p

pref
T. (B.9)
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Proof. If y∗ref(τ) is defined as the solution of:

min
yref(·), τ̄

∫ τ̄=w(T )

0

L1(pref)L2

(
xref(τ),u1,ref(τ),

u2,ref(τ)

pref

)
dτ

(B.10a)

s.t.

pref gref(τ) + Sref(τ)u2,ref(τ) = ẋref(τ), τ ∈ [0, τ̄ ],
(B.10b)

h
(
xref(τ),u1,ref(τ)

)
≤ 0, τ ∈ [0, τ̄ ],(B.10c)

r
(
xref(0),xref(τ̄)

)
≤ 0, (B.10d)

then, by (A.4) and (B.9), and moving the constant terms
out of the integral, it holds that y∗ref(τ) is also the solution
of:

min
yref(·), T

L1(pref)

∫ T

0

L2

(
xref

(
w(t)

)
,u1,ref

(
w(t)

)
,

(B.11a)

u2,ref

(
w(t)

)
pref

)
ẇ dt

s.t.

pref gref

(
w(t)

)
+ Sref

(
w(t)

)
u2,ref

(
w(t)

)
= ẋref

(
w(t)

)
,

p

pref
t ∈ [0,

p

pref
T ] , (B.11b)

h
(
xref

(
w(t)

)
,u1,ref

(
w(t)

))
≤ 0,

p

pref
t ∈ [0,

p

pref
T ] , (B.11c)

r
(
xref

(
w(0)

)
,xref

(
w(T )

)
≤ 0. (B.11d)

Then, considering the warping relations (A.3a-A.3c)
and (A.5), and defining yp(t) as the warped version of
y∗ref(τ), it also holds that yp(t) is the optimal solution of:

min
y(·), T

L1(pref)

∫ T

0

L2

(
x(t),u1(t),

u2(t)

ẇ pref

)
ẇ dt (B.12a)

s.t.
pg(t) + S(t) u2(t)

ẇ
=

ẋ(t)

ẇ
, t ∈ [0, T ], (B.12b)

h
(
x(t),u1(t)

)
≤ 0, t ∈ [0, T ], (B.12c)

r
(
x(0),x(T )

)
≤ 0. (B.12d)

Next, by the definition (B.7) of the warping factor ẇ

and reformulating L1(pref) as L1(pref )L1(p)
L1(p) , it follows that

yp(t) is also the optimal solution of:

min
y(·), T

pL1(pref)

pref L1(p)

∫ T

0

L1(p)L2

(
x(t),u1(t),

u2(t)

p

)
dt

(B.13a)

s.t. pg(t) + S(t) u2(t) = ẋ(t), t ∈ [0, T ], (B.13b)

h
(
x(t),u1(t)

)
≤ 0, t ∈ [0, T ], (B.13c)

r
(
x(0),x(T )

)
≤ 0. (B.13d)

Finally, as a constant factor multiplying the cost func-
tion does not change the optimal solution of the OCP,
yp(t), the warped version of y∗ref(τ), must also be the op-
timal solution of the original problem:

min
y(·), T

∫ T

0

L1(p)L2

(
x(t),u1(t),

u2(t)

p

)
dt (B.14a)

s.t. pg(t) + S(t) u2(t) = ẋ(t), t ∈ [0, T ], (B.14b)

h
(
x(t),u1(t)

)
≤ 0, t ∈ [0, T ], (B.14c)

r
(
x(0),x(T )

)
≤ 0. (B.14d)

Appendix B.2. Semi-Warpable Optimal Control Problem

Consider a general WOCP as given by (B.3a-B.3d).
The problem extension of adding u2(t)-dependent path
constraints is defined as Semi-Warpable Optimal Control
Problem (SWOCP) and can be expressed as:

SWOCP(p):

min
y(·)

∫ T

0

L1(p)L2

(
x(t),u1(t),

u2(t)

p

)
dt (B.15a)

s.t.

pg(t) + S(t) u2(t) = ẋ(t), t ∈ [0, T ], (B.15b)

h
(
x(t),u1(t)

)
≤ 0, t ∈ [0, T ], (B.15c)

h2

(
x(t),u1(t),u2(t)

)
≤ 0 t ∈ [0, T ], (B.15d)

r
(
x(0),x(T )

)
≤ 0. (B.15e)

It is important to note that, by adding u2-dependent
constraints, a warped version yp of an optimal reference
trajectory y∗ref(τ) does not necessarily satisfy feasibility:

h2

(
x∗ref(τ),u∗1,ref(τ),u∗2,ref(τ)

)
≤ 0

=⇒ h2

(
xp(t),up1(t),

pref

p
up2(t)

)
≤ 0

6=⇒ h2

(
xp(t),up1(t),up2(t)

)
≤ 0. (B.16)

Definition B1. (Warpable Reference (WR)) Regard a
general warpable system with p ∈ [pmin, pmax]. Consider
as well general inequality constraints

h2

(
x(t),u1(t),u2(t)

)
≤ 0, t ∈ [0, T ], (B.17)

that any feasible trajectory should satisfy. Then, the tra-
jectory ywr(t), obtained for a parameter value pwr, is de-
fined to be a warpable reference (WR) if:

1. ywr(t) satisfies (B.17).

2. Any warped trajectory of ywr(t), with warping factor
ẇ = p/pwr, satisfies (B.17).

Definition B2. (Best Warpable Reference (BWR)) Re-
gard a general SWOCP as defined by (B.15) and with
p ∈ [pmin, pmax]. A trajectory ybwr(t), obtained for a pa-
rameter value pbwr, is defined to be a best warpable refer-
ence (BWR) if:
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1. ybwr(t) is an optimal solution of the SWOCP(pbwr).

2. ybwr(t) is a WR with respect to the constraint (B.17).

Corollary B1. (Optimal Reference for SWOCP). Re-
gard a SWOCP for which a BWR exists and the con-
straint (B.15d) is inactive at this BWR. Then, the BWR
could be regarded as an optimal reference, i.e. pref =
pbwr, and any warped trajectory yp(t), obtained by
warping the optimal solution y∗ref(τ) of the reference
SWOCP(pref)=SWOCP(pbwr), is also an optimal solution
of the general SWOCP(p).

Proof. In an optimization problem, any inactive inequality
constraint at the optimal solution can be removed from
the problem without modifying the local optimal solution
(global in case of convex problems). In our case, the u2-
dependent constraint (B.15d) is inactive at y∗ref(τ) and by
Definition B1 and B2 any warped trajectory yp(t) also
satisfies (B.15d). As a result, (B.15d) can be removed,
the original SWOCP is transformed into a WOCP and
Corollary B1 holds directly due to Theorem B1.

Remark. If h2 is active for pbwr, i.e. h2

(
ybwr(τ)

)
= 0, the

warped trajectories yp(t) are usually suboptimal. In this
case, since they are still feasible and are generated from
an optimal trajectory, they still represent a better solution
than a random feasible trajectory.

Theorem B2. (Existence and Generation of BWRs) Re-
gard the optimal solution of the SWOCP(pmax) to be
y∗max(τ). Regard as well m inequality constraints involv-
ing u2, i.e. h2(x,u1,u2) = [h2,1(·), h2,2(·), . . . , h2,m(·)]. If
h2,i

(
x(τ),u1(τ),u2(τ)

)
, ∀ i = 1, . . . ,m and ∀ τ ∈ [0, τ̄ ],

is monotonically increasing (decreasing) with respect to u2

and is only active for u2 ≥ 0 (u2 ≤ 0), then y∗max(τ) is a
BWR.

Proof. Since y∗pmax
(τ) is an optimal solution, it satisfies the

constraint h2,i(·) ≤ 0. Furthermore, using the standard
warping relations (B.8a-B.8c), feasibility is equivalent to
saying that any warped trajectory yp(t) satisfies:

h2,i

(
xp(t),up1(t),

pmax

p
up2(t)

)
≤ 0. (B.18)

Moreover, for any monotonically increasing (decreasing)
h2,i and positive (negative) values of u2 it holds that:

h2,i

(
xp(t),up1(t),up2(t)

)
≤ h2,i

(
xp(t),up1(t),

pmax

p
up2(t)

)
(B.19)

Finally, combining (B.18–B.19) and using the fact that h2

is only active for positive (negative) u2 values, it holds
that:

h2,i

(
xp(t),up1(t),up2(t)

)
≤ 0. (B.20)

As a result, any warped trajectory yp(t) is a feasible so-
lution with respect to h2,i(·), ∀ i = 1, . . . ,m, and y∗pmax

(τ)
is a BWR.

Corollary B2. An important class of functions satisfying
the above equations is any h2

(
x(t),u1(t),u2(t)

)
that can

be reformulated as:

flower

(
x(t),u1(t)

)
≤ u2(t) ≤ fupper

(
x(t),u1(t)

)
,

where : flower(x,u1) < 0, fupper(x,u1) > 0.
(B.21)

Proof. The above constraint is equivalent to:

u2(t)− fupper

(
x(t),u1(t)

)
≤ 0, (B.22a)

−u2(t) + flower

(
x(t),u1(t)

)
≤ 0, (B.22b)

and this reformulation satisfies the conditions of Theorem
B2 as:

1. (B.22a) is monotonically increasing with respect to u2

and, since fupper(x,u1) > 0, it can only active be for
u2 > 0.

2. (B.22b) is monotonically decreasing with respect to
u2 and it can only be active for u2 < 0.

3. Only one of the two equations can be active at the
same time as (B.22a) is active for u2 > 0 and (B.22b)
is active for u2 < 0.

It should be finally mentioned, that there are SWOCPs,
for which no BWR exists. As this is not the case for the
AWE system under study, the applicability of warping to
those kinds of SWOCPs is far beyond the scope of this
paper.

iv
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