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H I G H L I G H T S

• We propose a smooth and continuous 1D model for stratified thermal storage vessels.

• The model includes buoyancy and mixing effects through a smooth formulation.

• The smoothness property is critical to integrate the model in optimization problems.

• The new model solves some computational issues of existing models from literature.

• Buoyancy is modeled by distinguishing between slow and fast buoyancy effects.
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A B S T R A C T

To mitigate the effects of the intermittent generation of renewable energy sources, reliable and efficient energy
storage is critical. Since nearly 80% of households energy consumption is destined to water and space heating,
thermal energy storage is particularly important. In this context, we propose and validate a new model for one of
the most efficient heat storage systems: stratified thermal storage tanks. The novelty of the model is twofold:
first, unlike the non-smooth models from the literature, it identifies the mixing and buoyancy dynamics using a
smooth and continuous function. This smoothness property is critical to efficiently integrate thermal storage
vessels in optimization and control problems. Second, unlike models from literature, it considers two types of
buoyancy: slow, linked to naturally occurring buoyancy, and fast, associated with charging/discharging effects.
As we show, this distinction is paramount to identify accurate models. To show the relevance of the model, we
consider a real tank that can satisfy heat demands up to 100 kW. Using real data from this vessel, we validate the
proposed model and show that the estimated parameters correctly identify the physical properties of the vessel.
Then, we employ the model in a control problem where the vessel is operated to minimize the cost of providing a
given heat demand and we compare the model performance against that of a non-smooth model from literature.
We show that: (1) the smooth model obtains the best optimal solutions; (2) its computation costs are 100 times
cheaper; (3) it is the best alternative for use in real-time model- based control strategies, e.g. model predictive
control.

1. Introduction

In the last decade, as the integration of renewable energy sources
into the electrical grid has steadily increased, energy storage has
emerged as one of the key components in this change. In particular, due
to the increasing uncertainty associated with renewable source gen-
eration, imbalances between production and consumption of electricity
have become more common. As the amount of variable renewable
electricity is expected to increase in future electrical systems [1], these

problems will become worse. In this context, energy storage is para-
mount to tackle these imbalances as it shifts consumption and genera-
tion and keeps the grid stable. In addition to grid stability, energy
storage has also become extremely important for profit maximization.
More specifically, under positive imbalances, i.e. generation larger than
consumption, electricity prices are usually lower (and vice versa). In
this situation, utility companies would ideally like to buy and store
energy under positive imbalances and use/sell the stored energy under
negative imbalances. To optimally carry out this strategy, utilities need
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cost-effective storage systems that are also fast and efficient.
While the perfect energy storage system does not exist, thermal en-

ergy storage (TES) systems partially fulfill the increasing demand for
cost-effective and efficient storage. While using electricity to generate
heat was not efficient in fossil fuel-based power systems, the flexibility
of using electricity for heating purposes combined with TES has re-
cently received increasing attention [2,3]. Particularly, considering that
26.3% of the electricity consumption in EU households is destined to
water and space heating, and that water and space heating accounts for
79.2% of the total energy consumption in the same households [4] and
one-third of related greenhouse gas emissions [5], TES systems might
help fulfill some of the energy storage requirements. The new class of
systems that exploit the interaction between different energy carriers
are usually called multi-energy systems, and as they try integrate di-
verse energy systems to achieve a higher energy utilization efficiency
[6], they have become in a central point of research [7,8]. Another
application where TES systems are a key component is concentrated
solar power plants; there, they help to smooth the production, to
maximize earnings from the electricity market fluctuation, and to in-
crease the lifespan of the power block [9].

1.1. Stratified fluid tank

One of the most important TES systems are stratified fluid tanks
[10], which store energy by keeping fluid layers stratified at different
temperatures. In detail, exploiting the fact that fluid density decreases
as temperature increases, they are able to stratify fluid layers where the
warmest layers are displaced to the top of the tank and the coldest
layers to the bottom. This type of heat storage systems are widely used,
and multiple applications can be found in the literature [3,5,11–13].

One of their main advantages is that, in comparison with a regular
mixed fluid tank, a stratified tank improves the average net energy and
exergy efficiencies by up to 60% [10]. To maximize the energy effi-
ciency, the system is built such that the mixing between the stratified
layers is minimized.

Within the family of stratified fluid tanks, there are several possible
configurations depending on how the tank is charged, i.e. how heat is
introduced in the tank, and on how the tank is discharged. In terms of
charging, the fluid in the tank can be heated directly using a fluid flow
or indirectly using a heat exchanger [10]. Likewise, when discharging
the tank, heat can be directly extracted as a fluid flow or indirectly
extracted using a heat exchanger. The four possible combinations are
depicted in Fig. 1.

The main advantage of indirect charge/discharge is that, as no flow
is introduced in the tank, stratification is more easily maintained.
However, since heat is indirectly transferred, the energy efficiency is
lowered. In contrast, while direct heating introduces turbulences in the
tank that might destroy the thermal stratification, it has a larger effi-
ciency as heat is directly transferred [10].

1.2. Modeling of storage tanks

The scientific literature regarding modeling of stratified thermal
storage vessels is very large and diverse. Typically, the proposed models
can be divided into three categories: 1-dimensional models [14–18], 2-
dimensional models [19,20], and 3-dimensional computational fluid
dynamics models [21,22]. Although 1D models are less accurate, they
are the preferred choice in several applications: while 2D and 3D
models are more accurate, their computational complexity makes them
unsuitable for process optimization or long-term simulation of the
storage tank [10,19]. By contrast, to analyze the behavior of the fluid
within the tank or the effect of new configurations, 2D and 3D models
give detailed information that a 1D model cannot provide.

One of the most important reasons behind the reduced accuracy of
1D models is the approximation they make to model the mixing of
layers due to buoyancy effects [18,19]. In more detail, given two con-
secutive layers in a real tank, the lower layer might achieve a tem-
perature higher than the top layer; in this scenario, the bottom layer
would rise, the top layer would sink, and during this process both layers
would mix. In a real tank, there are several scenarios when this effect
might occur:

1. Due to its larger contact area with the environment, the top layer in
the tank would normally suffer larger heat losses. Therefore, as the
top layer loses more heat, there is a point when the layer below
reaches a higher temperature and both layers mix.

2. When the tank is directly charged/discharged, new fluid enters the
tank. If the temperature of the incoming fluid is higher than the
temperature of any layer above the entrance point, the incoming
fluid will rise and mix.

3. When the tank is indirectly charged/discharged, a lower layer might
be heated more than a top layer. In this scenario, the fluid in the
lower layer will rise and mix.

When considering 1D models for thermal stratified storage vessels
from the literature, none of them can physically model this effect. More
specifically, while 1D models consider heat transfers between fluid
layers and input/output flows, they do not model the effect of gravity in
the tank. To address this, the 1D models proposed in the literature
usually include a post-processing step after each simulation step that
approximates the mixing of layers due to buoyancy effects [16,19]. This
post-processing algorithm has the following structure:

1. Check the temperature of each layer and evaluate whether buoy-
ancy effects are present.

2. If buoyancy effects are present, mix the corresponding layers.
3. Repeat steps 1–2 until buoyancy effects are removed.

Fig. 1. Simplified configurations of stratified tanks when considering the two types of exchanging heat (direct and indirect) and the two directions of the heat (charge
and discharge).
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1.3. Motivation

The post-processing method described before has a large dis-
advantage: the dynamics of the tank are not defined by a single con-
tinuous equation, but by a first continuous equation that models the
heat transfers and the input/output flows and a second non-smooth
algorithm that models the buoyancy effects. Due to this structure, the
1D dynamical models proposed in the literature cannot be used with
derivative-based optimization algorithms that make use of analytical
expressions; instead, they either require the use of heuristic optimiza-
tion methods or of finite differences if derivative-based optimization
methods are to be used. This is especially critical for control applica-
tions: if the optimal set of controls to steer the tank have to be com-
puted, the optimization problem that computes these controls needs to
be based on a heuristic method, e.g. genetic algorithms [23,24] or
particle swarm optimization [25], or on a derivative-based optimization
algorithm that relies on finite differences. As both heuristic methods
and derivative-based optimization via finite differences require large
computation times, the controller time step might not be enough for
these methods to find a solution. In addition, as heuristic methods
cannot guarantee that the obtained solution is a local minimum, the
quality of the obtained solution might be worse. This last issue could be
solved using dynamic programming [26], which could compute the
global solution using the two-step non-continuous dynamics; however,
due to the curse of dimensionality [26], the applications would be
limited to thermal storage tanks with a low-dimensional state space, i.e.
a small number of controls and a small number of stratified layers.

1.4. Contributions and organization of the paper

The main goal of this paper is to solve the described problem by
deriving a 1D continuous and smooth dynamical model that can ac-
curately model the buoyancy effects and that can be used in derivative-
based optimization algorithms that use analytical methods to compute
derivative information, e.g. automatic differentiation. While a model
with similar characteristics has been proposed in [12], that approach
only modeled the buoyancy effects due to input/output flows, i.e. due
to direct charging and discharging. In the current paper, the aim is
different as we propose a more general model that can represent the
buoyancy effects due to heat losses, indirect charging and discharging,
and direct charging and discharging. In addition, a second difference
w.r.t. [12] is the fact that, while the model of [12] included non-smooth
expressions given by the min and max functions, the model proposed in
the current paper is completely smooth.

As a second contribution, we take an approach that differs from the
existing literature and we explicitly model and identify two different
types of buoyancy: slow buoyancy effects that are linked to naturally
occurring processes, and fast buoyancy effects that are associated with
charging and discharging the vessel. As we show, this distinction is very
important to obtain a smooth model that can accurately represent the
buoyancy dynamics.

Finally, as a third contribution, to show the benefits of using the
smooth model in optimization problems, we compare the smooth model
against the non-smooth model in a real-life optimization setup: an op-
timal control application where a 1500m3 real commercial storage
vessel needs to satisfy a given heat demand over some time horizon
and, knowing the electricity prices over the given period, it has to
minimize the cost of charging the vessel while satisfying the demand.
Using this case study we show that the smooth model does not only
obtain the best optimal solutions, but its computation costs are 100
times cheaper.

As a final remark, it is important to note that the model estimation
and validation is done using a real thermal storage vessel. Having a
real-life setup is important to strengthen the conclusions of the study as
the model is validated in a real noisy environment.

The remainder of the paper is organized as follows: Section 2

introduces a real thermal vessel used as a case study to verify and study
the proposed model. Section 3 presents and discusses the proposed
model. Next, Section 4 estimates the parameters of the model when
applied to the real system and validates the model. Then, Section 5
illustrates the benefits of the model in an optimal control set-up by
comparing the model performance against non-smooth models from the
literature. Finally, Section 6 concludes the paper and discusses future
research.

2. Real thermal vessel

In this paper, to illustrate the proposed general model, we consider a
real stratified thermal storage tank: the Ecovat vessel [27]. This system
will be used as a case study to validate the proposed general model for
thermal storage vessels and it is briefly presented here as a short in-
troduction to this type of storage systems. Note however that the pro-
posed approach is generic and can easily be applied to other types of
stratified thermal storage tanks.

The considered thermal vessel is a large subterranean thermal sto-
rage vessel with capabilities for seasonal thermal storage and with the
ability to supply heat demand to a cluster of buildings. The thermal
vessel is divided into several segments that can be charged and dis-
charged separately. Due to this property and due to thermal stratifi-
cation, each of these segments acts as a different heat buffer. The vessel
employs indirect charging/discharging via heat exchangers located in
the vessel walls that can receive heat from two difference sources: a
heat pump or resistance heaters. The insulation structure of the vessel is
such that it can very efficiently store energy between seasons. In par-
ticular, the heat losses of the vessel are about 25% in a period of
6months. Another advantage of the vessel is that, due to its indirect
charging/discharging structure, the stratification of the layers, i.e. the
exergy of the system, can be better maintained. Fig. 2 provides a
schematic overview of the vessel and Fig. 3 depicts the real system
when it was under construction.

2.1. Technical specifications

Depending on the specific use case, the commercial versions of the
Ecovat vessel can be built with different volumes and different numbers
of heat buffers, with volumes and numbers of heat buffers respectively
ranging from 20,000m3 to 100,000m3 and from 8 to 15. For our case
study, as the first commercial vessel is still under construction, we
consider the Ecovat prototype, a thermal storage system of 1500m3 and
5 heat buffers that has been operational for approximately one year.

A technical schematic diagram of the prototype is depicted in Fig. 4,
where the gray parts represent concrete elements, the blue ones water,
and the yellow ones the insulation material. In the schematic diagram,
all dimensions are expressed in millimeters, the reference point of the
system is located approximately 1 meter above the ground, and the
water level starts 4 meters below the reference point (i.e. approximately
3 meters below the ground level). The diameter of the vessel is ap-
proximately 11 meters, and the water depth is 15.3 meters (i.e. 19.3
meters deep from the reference point). Moreover, the considered vessel
has 5 heat buffers, each one of them with different isolation thickness.

The vessel consists of an external concrete wall, an intermediate
isolation layer, and an internal concrete wall. While it cannot be seen
from the figure, the heat exchangers are not inside the water but em-
bedded in the internal concrete walls. The thermal properties of the
building materials, i.e. concrete and foam glass, are only known within
a range of values. These parameters are listed in Table 1, which sum-
marizes the thermal parameters of the concrete, the foam glass, and the
fluid (water) used in the Ecovat prototype.

2.2. Working principle

As can be seen from Fig. 4, the vessel consists of 5 different heat
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buffers. These heat buffers are separated along the wall by a horizontal
layer of isolation material so that the heat conductance across the walls
is restricted to each buffer. This structure prevents the destruction of
stratification due to wall conductance between the heat buffers and
helps the vessel to store energy more efficiently.

In addition of being isolated, each of the heat buffers can be charged
and discharged independently. Particularly, as mentioned in the pre-
vious section, each heat buffer has heat exchangers embedded in the
internal walls, which allows to charge and discharge the heat buffer
independently. This specific location of the heat exchangers will play a
very important role when estimating the system parameters: as ex-
plained in Section 4.2, this characteristic implies that the medium
where the heat is stored is a mixture of fluid and concrete.

3. Mathematical model

Before explaining and deriving the proposed mathematical model, it
is necessary to introduce the models from the literature and to discuss
their limitations.

Fig. 2. Schematic representation of the Ecovat system.

Fig. 3. Construction of the real Ecovat system.

Fig. 4. Technical schematic diagram of the Ecovat. All dimensions are given in
mm.

Table 1
Thermal properties of the materials.

Parameter Value/Range

Density of concrete 2360 kg/m3

Thermal conductivity of concrete 1.8W/mK
Specific heat of concrete [750, 1170] J/kg K
Thermal diffusivity of concrete [10−6, 6.5·10 ]7 m2/s
Thermal conductivity of foam glass 0.041W/mK
Density of water 1000 kg/m3

Specific heat of water 4181.3 J/kg K
Thermal diffusivity of water 0.143·10 6 m2/s
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3.1. Traditional model

The standard 1D model [10,17] for a heat storage vessel divides the
tank in M segments/layers. Then, it models each layer with a partial
differential equation (PDE) based on the heat transfer equation. In its
most general case, each layer i is characterized by a stateTi representing
the temperature of the layer; this state can be controlled by the input
flow mi and its temperature Ti

in or by the external input heat Qi (heat
sink or hear source) in the layer.

3.1.1. Partial differential equation
The PDE that models the state evolution of layer i is given by:

= + + +T
t

T
z

P k
c A

T T Q
c A z
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A z
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where , , and cp respectively represent the fluid diffusivity, density,
and specific heat; A P,i i, and zi the cross-sectional area, perimeter,
and thickness of layer i k; i the thermal conductance of the isolation wall
of layer i; and T the ambient temperature (ground temperature if the
vessel is underground).

It is important to note that not all vessel architectures make use of
all input controls: in case of direct charging and discharging, only the
input controls mi andTi

in are used. Likewise, in case of indirect charging
and discharging, only Qi is required. In addition, it is also important to
remark that Ti

in might be Ti 1 or +Ti 1 depending on whether the flow mi
comes from the bottom or top layer.

3.1.2. Mixing and inversion of layers
As briefly introduced in Section 1.3, this 1D model has an important

drawback: as it is solely based on heat transfer, it cannot model the
mixing of layers due to buoyancy effects. To address this issue, the
traditional models from the literature perform, after each simulation
time step, a non-smooth post-processing algorithm. In this post-proces-
sing step, the temperature of all layers is checked to detect buoyancy
effects; if buoyancy is present, the layers involved are mixed; this
process is repeated until all buoyancy effects are removed.

A simple example of this traditional simulation scheme is given in
Algorithm 1. On this example, the vessel is divided into M layers, where
layer M is at the top and layer 1 at the bottom of the tank, and the tank
is steered using a generic control vector u, where u can comprise the
input flow m, the input temperature T in of the flow, and/or the heat
sink/source Q. The algorithm simulates the system using a simulation
time step of length t and for a total of N time steps. As can be seen in
lines 4 and 5, the simulation routine involves two steps: a first part
where the PDE is solved and a second part where the buoyancy effects
are included as an iterative algorithm.

Algorithm 1. Traditional Simulation Scheme

1: function SIMULATOR …T u u t V, [ , , ], ,N1 1

2: T Tt 1
3: for t … N{1, 2, , } do
4: +Tt 1 simulatePDEStep(T u t, ,t t )
5: +Tt 1 correctBuoyancy( +T V,t 1 )
6: end for
7: return …T T T, , , N1 2
8: end function
9: function CORRECTBUOYANCY T V,
10:

while
= …

T i T imax [ ] 1
i N2, ,

< 0 do

11: for i … M{2, , } do
12: if <T i T i[ ] [ 1] then
13: T i T i[ ], [ 1] mixLayers(T i T i V i V i[ ], [ 1], [ ], [ 1])
14: end if
15: end for
16: end while
17: end function

18: function MIXLAYERST T V V, , ,i i i i1 1
19: =T T Ti i1
20: = +T T Ti i

Ai zi
Ai zi Ai zi1 1 1 1

21: = + +T T Ti i
Ai zi

Ai zi Ai zi
1 1

1 1
22: end function

3.1.3. Model drawback
As explained in Section 1.3, while this traditional scheme is a very

good approximation when simulating the dynamics of the heat storage
vessel, it is not so suitable for use in derivative-based optimization
problems. In particular, this limitation becomes very important when
controlling the vessel and/or estimating its parameters: to solve the
related optimization problems either heuristic methods or derivative-
based optimization methods with finite differences are needed. As ex-
plained before, these methods have two problems:

1. Their computational requirements can easily become unacceptable.
2. They can compromise the quality of the solution.

3.2. Modeling slow buoyancy effects

In order to tackle these issues, derivative-based optimization
methods with analytical derivative computations, i.e. automatic dif-
ferentiation [28], can be used. However, in order to use them, the
dynamics of the system need to be modeled by smooth expressions. In
this paper, we propose a possible solution to include the buoyancy ef-
fects within the dynamics of the system using a continuous and smooth
function. In particular, in this first section, we propose a general
methodology for buoyancy effects whose time span is larger than the
simulation time step, i.e. slow buoyancy effects. Next, in Section 3.3, we
expand the model to also include fast buoyancy effects, i.e. buoyancy
effects with a time span shorter than the simulation time step.

3.2.1. Discretized dynamics
In a simulation framework, the PDE defined by (1) is normally

discretized and integrated on time using an expression of the following
form:

=+T F Q m T tT( , , , , ),t i i t t i t i i1, , ,
in (2)

where Tt i, is the temperature of layer i at time step t T, t the vector of
temperatures in the M layers at time step t Q m, ,t i t i, , , and Ti

in the
control inputs of layer i at time step t, and t the length of the time step.

As an example, we can derive Fi in two steps using a simple in-
tegration method:

1. Transforming the PDE into an ordinary differential equation (ODE) by
approximating the second-order spatial derivatives by finite differ-
ences.

2. Using a numerical integration method to perform integration of the
ODE.

In this case, if a forward Euler method is used for the numerical
integration, (2) is equivalent to:
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+
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where zi is the thickness of layer i and:
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J. Lago, et al. Applied Energy 248 (2019) 640–655

644



3.2.2. Buoyancy effects via the max function
As shown in [16], a single mixing iteration in the standard ap-

proach, i.e. line 13 in Algorithm 1, can be easily modeled using the max
function by replacing line 13 by the following two expressions:

= +T i T i T i T i[ ] [ ] max(0, [ 1] [ ]),i i, 1 (5)

=T i T i T i T i[ 1] [ 1] (1 ) max(0, [ 1] [ ]),i i, 1 (6)

where

=
+

A z
A z A z

0, 1i i
i i

i i i i
, 1

1 1

1 1 (7)

is the ratio between the volume of layer i 1 and the sum of the vo-
lumes of both layers.

It can be argued that if the dynamics of the buoyancy effects are
slow, a single mixing iteration might suffice. In particular, if the si-
mulation time step t is small in comparison with the time span where
the effects of buoyancy start to be noticed, a single mixing iteration can
keep up with the changes that occur due to buoyancy. In this scenario,
using (5) and (6), the mixing algorithm can be directly integrated in the
discrete dynamics. More specifically, (2) can be expanded as follows:

= ++

+ +

T F Q m T t T T
T T

T( , , , , ) max(0, )
max(0, )

t i i t t i t i i i i t i t i

i i t i t i
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, 1 , 1 ,

, 1 , , 1 (8)

3.2.3. Buoyancy effects via a smooth function
While the max approximation allows to integrate the buoyancy ef-

fects directly within the dynamics, the resulting equations cannot easily
be handled by a derivative-based optimization method as the max
function is non-smooth. However, as indicated in [29], the max func-
tion can be approximated by the convex log-sum-exp function; in that
case, (8) can be approximated by the following smooth expression:
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where the parameter µ is a scaling factor to make the max approx-
imation sharper. The specific value of µ should be selected according to
the specific application so that, while the approximation of the max
function is sharp, there are no numerical issues. In the case of heat
storage vessels, considering the range of temperature differences be-
tween consecutive layers, we have found that =µ 10 is a reasonable
value.

With this new approximation, the model for the vessel dynamics
includes buoyancy, is represented by a smooth function, and can be
integrated in any derivative-based optimization framework.

3.2.4. Empirical analysis
As indicated in the previous section, an important requirement for

the proposed approximation to work is to have buoyancy effects whose
time span is large in comparison with the simulation time step.

An example of a relative slow buoyancy effect is the natural re-
circulation of the fluid due to the higher heat losses in the top layer. In
particular, as the top layer has a larger contact area with the environ-
ment, it suffers larger heat losses than the layers below it; as a result,
the top layer reaches lower temperatures and the fluid from the lower
layers rises to the top. As this effect depends on heat losses, it is a very
slow process; in the case of the Ecovat vessel, it can be shown that, even
for time steps t of 2 h, the proposed model can accurately model this
natural buoyancy effect.

This can be observed in Fig. 5, where the simulated system using the
slow buoyancy model is compared at different time steps t against the
real data in the vessel during a 2-months cycle when the system was
undisturbed, i.e. no heat was added or extracted (note that the

simulation was done after estimating the model parameters; for the
details of the parameter estimation we refer to Section 4). As can be
observed, both =t 30 min and =t 2 h are small enough and a single
mixing iteration per time step suffices to correct the buoyancy effect:
the larger heat losses of the top layer cannot be noticed as the model
correctly represents the mixing of the lower layers. However, as t
increases to 4–6 h, the effect starts to be noticeable: the rate of heat
losses in the top layer is larger than the update frequency of the
buoyancy effect and the upper layers appear to have a lower tem-
perature than the layers below it.

While the proposed model is very accurate for slow buoyancy ef-
fects, it is not for the faster buoyancy effects that appear due to char-
ging/discharging. As indirect/direct charging introduces a much larger
heat rate than heat losses, the corresponding buoyancy effects take
place in a much shorter time span. This can be observed in Fig. 6, where
the simulated slow model is compared for different time steps t
against the real evolution of the vessel during a 3-week charging period.
During that period, the vessel is charged via its heat buffer 3, i.e. right
in the middle of the vessel; during that time there is a moment where
the temperature in the middle of the tank is equal to the temperature of
the layers above and mixing due to buoyancy starts to occur. While the
proposed slow model still works, it only does so accurately for small
time steps t . Particularly, while =t 5 min can correctly represent the
buoyancy effects, =t 30 min already leads to an inconsistent system
state where the middle temperatures are higher than the top ones. For
even larger t the situation worsens: not only does the difference in
temperature between the middle and top layers increase, but numerical
artifacts such as oscillations appear in the simulated trajectory.

3.3. Modeling fast buoyancy effects

Based on the previous results, it is clear that to model fast buoyancy
effects a different approach is needed. In this section, we propose a
model for the buoyancy effects that appear when charging and dis-
charging the vessel. For the sake of simplicity, the model explanation
will focus on the case of indirect charging. However, in Sections 3.3.4
and 3.3.5 we briefly describe how the model also applies to the case of
indirect discharging and direct charging/discharging. Similarly, during
the model derivation, we will assume that all layers have the same
volume; nonetheless, in Section 3.3.6 we will briefly explain the ex-
tension to layers with different volumes.

3.3.1. Empirical observation
When observing the buoyancy effect due to indirect charging, what

we can effectively see is that any layer on top of the charged layer with
a lower or equal temperature is also charged. More specifically, what
we empirically observe is that, when applying heat to a specific layer,
the heat is homogeneously distributed across the charged layer and any
layer above it with an equal or lower temperature.

This concept is better understood with a simple example: consider a
simple vessel with 4 layers as represented in Fig. 7. Let us analyze what
the above effect means in terms of heating the third layer: if T3 is equal
or lower than T1 or T2, any heat applied to the first or second layer will
be equally distributed to the third layer; similarly, ifT3 is equal or larger
than T4, any heat applied to the third layer will be effectively divided
between the third and the fourth layer. Mathematically, this means that
at any given time step t, the third layer is indirectly heated by the
following amount:

+ +Q Q Qt t t3 ,3 2 ,2 1 ,1 (10)

with

= >
T T
T T

1 if
0.5 if3

3 4

3 4 (11)
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= <
< <

T T T T
T T T
T T T T

0 if and
0.5 if
1/3 if and

2

2 3 2 4

3 2 4

3 2 4 2 (12)

= <
< <

T T
T T T
T T T T

0 if
1/3 if
0.25 if and

1

1 3

3 1 4

3 1 4 1 (13)

3.3.2. Mathematical modeling
Formally, the above observation means that, at any time step t, the

ith layer in the vessel is heated by the following amount:

=
=Q

T T
·

if

0 else
l

i
t l

t l t i

0 ,

1
, ,

j l
M

Tt l Tt j, ,

(14)

with S defining the indicator function:

= S1 if is true,
0 otherwise.S (15)

Using this empirical observation, we can now extend (2) to include
the buoyancy effects due to indirect charging. In particular, by repla-
cing Qt i, by (14), these effects can be included in the model.

Fig. 5. Effect of t when using the slow buoyancy model for slow buoyancy effects. The plot compares real vs. simulated trajectories of the Ecovat vessel during a 2-
month cycle where the vessel is undisturbed. As buoyancy is slow, a medium-size t , e.g. 30min or 2 h, can model the buoyancy effect. However, as t increases, to
e.g. 4–6 h, the effect starts to be noticeable.

Fig. 6. Effect of t when using the slow buoyancy model for fast buoyancy effects. The plot compares real vs. simulated trajectories of the Ecovat vessel during a 3-
week cycle where the third heat buffer is charged. In this scenario, the slow model only captures buoyancy effects when using a small t , e.g. 5min.
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3.3.3. Smooth approximation
The model proposed in the previous section is non-smooth and non-

continuous. As with the initial model proposed for the slow buoyancy
effects, an approximation is needed to transform (14) into a smooth and
continuous expression. Analyzing (14), it can be seen that its non-
smoothness and its non-continuity come from the inclusion of step
functions:

=T T T Tstep( ) 1 if 0
0 else.1 2

1 2
(16)

Therefore, the only requirement to obtain a smooth and continuous
model is to replace the step functions by a smooth and continuous
approximation. One of the most popular approximations [30, Chapter
11] of the step function is the logistic function:

=
+

S T T
e

( ) 1
1

,µ T T1 2 ( )1 2 (17)

where µ is a scaling parameter that indicates how sharp the logistic
function is, i.e. the larger the µ the closer the logistic function is to the
real step function. In all the experiments carried out in this research,

=µ 1 was selected as it was empirically shown to be an appropriate
value.

Using this approximation, we can finally establish the smooth and
continuous approximation of the buoyancy effects due to indirect
charging. Particularly, by replacing Qt i, in (14) by:

=
=

=

Q Q
S T T

S T T
·

( )
,t i l

i
t l

t l t i

j l
M

t l t j

, 0 ,
, ,

, ,
(18)

the buoyancy effects due to indirect charging can be included within
the discrete system dynamics.

3.3.4. Modeling indirect discharging
While the proposed model was derived for the case of indirect

charging, it can be easily extended to the case of indirect discharging. In
detail, when discharging the vessel, the effect is the opposite: any layer
below the layer that is discharged that has a temperature higher or
equal than the discharged layer will also be discharged in an equally
distributed manner.

This effect can be easily modeled using the same approximations as
for the charging case, i.e. for the indirect discharging, Qt i, should be
replaced by:

=
=

=

Q Q
S T T

S T T
·

( )
,t i l i

M
t l

t i t l

j
l

t j t l

, ,
, ,

0 , ,
(19)

3.3.5. Modeling direct charging and discharging
In the case of direct charging, the empirical observation is very si-

milar: the heat of the incoming flow will be distributed across any layer
on top of the input layer that has a temperature equal to or lower than
the temperature of the incoming flow (note that for indirect charging it
was any layer on top with a temperature lower than or equal to the
temperature of the charged layer). Therefore, defining by Tt i,

in the tem-
perature of the incoming flow at time t and layer i, the approximation
for direct charging can be easily derived from (18) with a minor
modification: the replacement of the temperature of layer l at time step
t, i.e. Tt l, , by the temperature of the incoming flow at layer l at time step
t, i.e. Tt l,

in:

=
=

=

m m
S T T

S T T
·

( )
,t i l

i
t l

t l t i

j l
M

t l t j

, 0 ,
,
in

,

,
in

,
(20)

Using the same reasoning as for indirect discharging, the approx-
imating for direct discharging can be similarly derived as:

=
=

=

m m
S T T

S T T
·

( )
,t i l i

M
t l

t i t l

j
l

t j t l

, ,
, ,

in

0 , ,
in

(21)

3.3.6. Layers with different volume
For the sake of simplicity, all the derivations have been performed

assuming constant volume across the layers, i.e. assuming that A z·i i
was constant for each layer i. However, the model can be easily ex-
tended to the case where the volumes are not constant. In this case, it
can be shown that (18) is equivalent to:

=
=

=

Q Q
A z S T T

A z S T T
·

( )
,t i l

i
t l

i i t l t i

j l
M

j j t l t j

, 0 ,
, ,

, ,
(22)

4. Parameter estimation and validation of the model

In order to validate the proposed model, we use it to estimate the
parameters of the real stratified thermal storage vessel introduced in
Section 2. First, we estimate the model parameters using a training
dataset, and then evaluate the model performance in an out-of-sample
dataset. Next, we compare the obtained parameters with their ideal
value considering the structure and materials of the vessel.

4.1. Data

The employed data for validating the model consists of a period of
7months divided in two different cycles:

1. A 5-month cycle (15/04/2017–10/09/2017) where the buffer 3, 4,
and 5 (the top 3 buffers of the vessel) are charged interchangeably.

2. A 2-month cycle (10/09/2017–15/11/2017) where the system is
left in a steady state and natural discharge occurs.

From this period, there are two types of measurements available:

1. The temperatures T inside the vessel at different depths; these are
sampled with a frequency of 1 week.

2. The heat values Q introduced in each of the 5 heat buffers; these are
sampled with a frequency of 15min.

These measurements of the input heats and the temperatures are
respectively depicted in Fig. 8 and Fig. 9.

Fig. 7. Simplified heat storage vessel with 4 layers and indirect charge/dis-
charge.
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4.2. Model parameters

Unlike most heat storage vessels, the considered vessel has its heat
exchangers embedded into the concrete wall. As a result, the storage
medium for the heat is a mixture of fluid and concrete and, unlike
regular heat storage tanks, the parameters that define the dynamics of
the vessel are not specific to the fluid but to a mixture of fluid and
concrete. More specifically, the density , the specific heat cp, and the
diffusivity are defined by the properties of the fluid (water in the case
of the considered vessel) and the concrete in the walls. Considering this
observation, the fact that the considered vessel works with indirect
charge/discharge, as well as Eqs. (1) and (3), it can be shown that there
are 6 unknown parameters defining the system dynamics; these are
listed and described in Table 2.

4.3. Estimation problem

Define by = …T TT [ , , ]k k k M,1 , the temperature distribution at time
step k, by = …Q QQ [ , , ]k k k M,1 , the input heat at the same time step, by

= T[ , , , , , ]M1 the vector of unknown parameters, and by
M the number of layers used to model the vessel dynamics. Define also
the discrete system dynamics by =+T G tT Q( , , , )k i i k k1, , with t the
length of the discretization interval and with G (·)i the numerical in-
tegration of (1) including the two proposed buoyancy models; i.e. G (·)i
is equivalent to (9) but replacing Qk i, by (18) and (19). Then, the nu-
merical optimization problem that is solved to estimate the model
parameters is given by:

S
…

T Tminimize ¯
i

i i
T T, , ,

2

2

N0 (23a)

= = … = …+T G t k N i MT Q
subject to

( , , , ) for 0, , 1, for 1, ,k i i k k1, (23b)

where T̄i represents the temperature measurement at time step Si; the
set of time indices when temperature measurements are available, i.e.
S = = …i i N T{ 0, , , ¯ exists}i

1; and +N 1 the number of discrete time
points.

Note that the above formulation could also include the input heat Q
as optimization variable. However, for the sake of simplicity, it is as-
sumed that the measurements of Q are error-free. In addition, to avoid
interpolations in Q t, is selected as a multiple of the sampling period
of Q, i.e. =t a·15min with a .

4.4. Experimental setup

To estimate and validate the model, the experimental setup is di-
vided into two distinguishable parts: model validation and parameter
estimation.

4.4.1. Model Validation
In a first part, the model is estimated using a training dataset and

validated with an out-of-sample test dataset. The goal of this part is to
ensure that the estimated model does not overfit the training dataset
and to ensure that its accuracy is in agreement with the existing lit-
erature. To verify that the model validation is independent from the
training/test dataset split, i.e. that it does not overfit, the parameter
estimation is done 50 times and each time a random training/test da-
taset split is considered. Then, the average performance is compared
with the performance of the existing models from the literature. To
perform the splits, the training/test datasets are built using the fol-
lowing convention:

1. Training dataset: a dataset that spans 5.5months and includes part
of the charging period and part of the natural discharging period.

2. Test dataset: an out-of-sample dataset of 1.5months that includes
three weeks of the charging period and three weeks of the natural
discharging period.

To randomize the splits, we consider that there are 25weeks during
the charging period and we randomly select an integer i between 1 and
23. Then, weeks +i i, 1, and +i 2 are used for the test dataset and the
remaining 22 for the training dataset. Next, the process is repeated for
the natural discharging period considering that in this case the number
of weeks is 9, i.e. the randomly selected integer varies between 1 and 7.
The results of this experiment are described in detail in Section 4.5.

4.4.2. Parameter estimation
After validating the model, the parameter estimation is performed

on the full dataset to ensure that the parameters are estimated using as
much information as possible. In addition, as the estimation problem
(23a) is non-convex, the problem is solved using multi-start optimiza-
tion. In particular, the optimization problem is solved multiple times
using different initial guesses for the optimization variables and the
optimal parameters are selected from the optimization run that obtains
the best optimization cost. For this application, the optimization pro-
blem is solved 30 times2 and the initial guesses are randomly generated
using Gaussian distributions. For the six model parameters, i.e.

T, , , , ,M1 , the means of their Gaussian distributions are se-
lected as their theoretical values assuming water as storage medium
(see the first column of Table 4). For the temperature variables, at those
time points where measurements are available, the means of the

Fig. 8. Heat introduced in the vessel during the 7-month period considered.

Fig. 9. Temperature evolution in the vessel at intervals of 1month during the 7-
month period considered. The black dashed lines represent the division be-
tween the 5 heat buffers within the vessel. The depth is measured using the
reference system defined in Fig. 4.

1 Note that the temperature sampling period of one week will always be larger
than t .

2 For the considered application, it was empirically observed that after 20–30
iterations the best optimal solution did not vary much anymore.
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Gaussian distributions are selected as the measured temperatures; for
the time points where measurements are not available, the means are
selected by a linear interpolation using the closest measurements in
time. The standard deviations of the distributions are selected as half
the value of the means. The results of this experiment are described in
Section 4.6.

4.4.3. Implementation details
To estimate the model, we consider a discrete time step t of 2 h and

an explicit Euler scheme to perform the numerical integration of the
dynamics. In terms of the spatial discretization, we consider different
thicknesses for the different heat buffers of the vessel. Particularly, as
the top buffers are more often charged and discharged, they employ a
coarser spatial discretization. The discretization uses 23 layers dis-
tributed as follows:

• 6 layers of 550mm for the top heat buffer (buffer 5).
• 6 layers of 550mm for the heat buffer 4.
• 6 layers of 550mm for the heat buffer 3.
• 3 layers of 967mm for the heat buffer 2.
• 2 layers of 1450mm for the bottom heat buffer (buffer 1).

The problem is modeled in python using the mathematical mod-
eling framework CasADi [31] and solved using the interior point solver
IPOPT [32].

4.5. Model validation

To validate the model, the parameters are estimated for 50 different
training/test dataset splits and, for each split, the model is evaluated in
terms of the mean and maximum absolute errors for both the training
and the test dataset. Then, the model is considered to be valid if its
performance is independent of the training and test datasets and if its
accuracy is in agreement with the existing literature. A summary of the
results is listed in Table 3, which presents the average and standard
deviation of the mean and maximum absolute errors across the 50
splits. In addition, the distribution of the two error metrics is depicted
in Fig. 10. As can be observed, the average of both metrics in the
training and test datasets is of the same order of magnitude, with the
average errors in the test datasets being smaller. This last result is ex-
pected as the test datasets comprise a shorter time span and should
therefore have lower errors.

Another observation that can be made is that the variance of the
errors in the training datasets is smaller than the variance in the test
datasets. This effect is also expected as the size of the training datasets
is much larger than the size of the test datasets (a training dataset spans
5.5 months while a test dataset only 1.5months). More specifically, as
two training datasets can be at most 27% different (over the 5.5 months
two training datasets can at most differ by a month and a half), it is
normal for them to have similar errors. In contrast with that, two test
datasets can show more variable errors as they can be 100% different (a
test dataset only contains 1.5months of the total 7 months of data).

Based on the obtained results it is clear that no significant

differences exist between the performance of the model in the training
datasets and the test datasets. Moreover, considering that over a period
of 5.5months the mean absolute errors are below 1 °C and the max-
imum errors are below 5 °C, it can be stated that the accuracy of the
proposed model is in agreement with the existing literature [16]. Using
these two observations it can be concluded that: (1) the proposed model
is valid; (2) the model is accurate; (3) the model does not overfit the
data.

4.6. Parameter estimation

As described in Section 4.4.2, after the model has been validated,
the parameters of the model are estimated using the full dataset and
multi-start optimization. In addition, to further validate that the ob-
tained parameters are reasonable, two comparisons are done:

1. The estimated parameters are compared for two different spatial
discretizations: 23 layers (as before) and 31 layers. As the para-
meters are independent from the number of layers, a valid model
should have similar parameters in both estimations.

2. The estimated parameters are compared against the theoretical
parameters in the case that the heat storage medium is only water or
only concrete. As motivated in Section 4.2, since the considered
vessel has its heat exchangers embedded in the concrete wall, the
parameters of the dynamics are not specific to the fluid but to a
mixture of fluid and concrete. Therefore, if the model is valid, the
estimated parameter are expected3 to be in the range of the para-
meter values in the case of having only water as storage medium and
the parameter values in the case of having only concrete.

The results of this experiment are listed in Table 4. As can be ob-
served, the estimated parameters satisfy the two conditions for the
model to be valid:

1. The difference in the estimated parameters for different numbers of
layers is very small. Particularly, except for the heat loss parameter

1 in the lowest layer, all other parameters show very small varia-
tions. In the case of 1, this variation can be easily explained: as can
be observed from Fig. 9, the temperature at the bottom of the vessel

Table 3
Comparison between training and test errors across the 50 training/test dataset
splits in terms of the average and standard deviation of the mean absolute er-
rors and the average and standard deviation of the maximum absolute errors.

Metric Training set Test set

Average mean absolute error 0.84 °C 0.64 °C
Std. mean absolute error 0.07 °C 0.39 °C
Average maximum absolute error 4.14 °C 2.88 °C
Std. maximum absolute error 0.50 °C 1.24 °C

Table 2
Model parameters to be estimated.

Parameter Description

[m2/s] Diffusivity of the storage medium.
[m K/J] Coefficient of the input heat. As the cross-sectional area A does not vary along the tank, the same =i c Ai

1
p

applies to each layer i.

[1/s] Coefficient of heat losses of the inner layers. As the cross-sectional A and the perimeter P do not vary along the tank, the same =i
Pik
c Aip

applies to each inner layer i.

1 [1/s] Coefficient of heat losses of the bottom layer, which differs from the general as the bottom layer has a larger surrounding wall area.

M [1/s] Coefficient of heat losses of the top layer, which differs from the general as the top layer has a larger surrounding wall area.
T [°C] Temperature of the surrounding terrain. While it is known that the surrounding ground has a temperature of 11–13 °C, the exact value is unknown.

3 Assuming that, if the model parameters depend on two materials, their value
is a linear combination of the parameters defined for each material.
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only varies between 11 °C and 13 °C, which in turn is in the same
range as the ground temperature T . As a result, the heat losses in
the lower layer have an almost negligible effect on the overall ac-
curacy of the model and, as the problem is non-convex, there might
exist several local minima with very similar accuracies but very
different 1 values.

2. All the estimated parameters are within the range of theoretical
parameters corresponding to the cases of having only water as sto-
rage medium and having only concrete.

4.7. Discussion

Based on the obtained results, it can be claimed that the proposed
model is a valid model that correctly identifies the system dynamics. In
particular, the model accuracy in out-of-sample datasets is similar to
the accuracy in training datasets and this accuracy is within the range
of expected accuracy for a 1D model. In addition, the estimated para-
meters are within the range of values to be expected to correctly
identify the physics behind the system dynamics. These two observa-
tions are clear indications that the model seems to be correct and that
correctly represents the real physical behavior of heat storage vessels.

5. Model comparison

As motivated in the introduction, the goal of the proposed model is
to provide a smooth representation of the dynamics of heat storage
vessels so that the model can be employed in derivative-based optimi-
zation problems. In this section, we show the benefits obtained in op-
timization problems when using the proposed smooth model instead of
the non-smooth models from the literature. In detail, we compare the
quality of the optimal solution and the computation cost of the smooth
and non-smooth models in the same optimization setup: an optimal

control application where a stratified thermal storage vessel needs to
satisfy a given heat demand over some time horizon while the elec-
tricity prices over the same period are known. The goal of the controller
is to find the optimal charging strategy that minimizes the cost while
satisfying the heat demand. As before, we consider as a case study the
real stratified thermal storage vessel introduced in Section 2.

5.1. Smooth vs non-smooth models

As introduced in Sections 1.3 and 3.1, because the 1D dynamical
models proposed in the literature are non-smooth, they cannot be em-
ployed in optimization setups using derivative-based optimization
methods that employ automatic differentiation. Instead, they either
need to employ heuristic methods or derivative-based methods that use
finite differences.

5.1.1. Heuristic methods
As heuristic methods can optimize black-box functions, they are a

good fit for optimization problems where the gradient and Hessian
matrix of the problem cannot be computed analytically. However,
while they can be used to integrate non-smooth models in optimization
setups, they have two major problems: (1) they provide no guarantee of
finding a local minimum or even a feasible solution; (2) they are usually
computationally more expensive than derivative-based optimization
methods.

5.1.2. Finite differences
Another option for non-smooth models is to employ finite differ-

ences to compute the derivative-based information and then use the
same derivative-based optimization algorithms that smooth methods
can use. However, unlike smooth models for which automatic differ-
entiation can be used, the cost of computing second-order and first-
order derivative information via finite differences respectively grows
quadratically and linearly with the number of optimization variables.
As a result, finite differences can quickly become computationally in-
feasible for many optimization problems.

More specifically, denoting the cost of evaluating some function
f x: n by cf , computing the gradient fx and the Hessian
matrix fx

2 via finite differences have approximate costs of n c· f and
+n n c·( 1)· f respectively4. By contrast, using automatic differentiation,

the cost of computing fx is not only independent of the number of
variables n but lower than c4· f ; likewise, the cost of computing fx

2 not
only grows linearly with n but is bounded by n c8· · f [28]. This

Fig. 10. Mean and maximum absolute errors
of the training and test datasets for the 50
different dataset random splits. As the
average of both metrics in the training and
test datasets is of the same order of magni-
tude, it is clear that no significant differ-
ences exist between the performance of the
model in the training and test datasets.

Table 4
Results of the parameter estimation for different numbers of layers. The esti-
mation is compared against the ideal theoretical parameters assuming that the
construction dimensions are perfectly known and considering that the material
for storing heat in the vessel is either only water or only concrete.

Theoretical values Estimated parameters

Parameter Water Concrete 23 Layers 31 Layers

[m2/s] 1.4·10 07 52.0·10 07 2.32·10 07 2.76·10 07

[m K/J] 2.4·10 09 5.7·10 09 3.49·10 09 3.48·10 09

[1/s] 0.8·10 08 1.9·10 08 1.60·10 08 1.68·10 08

1 [1/s] 2.7·10 07 6.3·10 07 3.99·10 07 2.55·10 04

M [1/s] 5.7·10 08 13.5·10 08 9.62·10 08 10.15·10 08

T [°C] [11, 13] 13.03 13.09

4 Note that the cost of computing the Hessian is derived for the general case of
having a non-symmetric Hessian, i.e. the Hessian of a non-smooth function, as
this represents the real cost of the non-smooth models from the literature.
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comparison is summarized in Table 5.
A second disadvantage of using finite differences is the accuracy:

computing the gradient and Hessian matrix via finite differences re-
duces the numerical precision w.r.t. to the original function f and in-
troduces truncation errors [28].

5.2. Optimal control problem

To evaluate and compare the performance of the proposed smooth
model vs. non-smooth models, we consider an optimal control problem
(OCP) where a stratified thermal storage vessel needs to satisfy a given
heat demand over a horizon while ensuring that its costs are minimized.
For this, the spatial discretization of 23 layers described in Section 4 is
considered again. In addition, it is assumed that only the top 4 buffers
(buffer 2 to buffer 5) can be charged and discharged and that each
buffer has independent heat exchangers for charging and discharging.
The definition of the different OCP variables and parameters are listed
in Table 6. Using these definitions the OCP can then be defined as:
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From the optimization problem above, several facts are to be noted:

• The penalty cost T T· N0 2
2 ensures that the optimal solution does

not leave the vessel discharged.
• The constraint (24g) ensures that at each time step k the heat ex-
tracted from the 4 buffers is equal to the heat demand.
• In (24h) and (24i), S

TM j k j
1

,i i
is simply the average temperature of

heat buffer i.
• The constraint (24h) ensures that the input heat is lower than the
maximum input heat considering the maximum temperature and
flow in the heat exchanger and the actual temperature in the vessel.
• Eq. (24i) ensures that the average temperature in a given heat buffer
is enough to satisfy the heat demand required from that buffer.

5.3. Comparison setup

To compare the performance of the smooth model vs the non-
smooth models from the literature, the OCP is first solved using the
proposed smooth model and a second-order Newton-based optimization
method with automatic differentiation. Then, the same OCP is solved
using the equivalent non-smooth model and the following optimization
techniques:

1. The particle swarm optimization (PSO) [33], one of the most widely
used heuristic algorithms that has often been used for optimizing
different types of energy storage systems [25,34,35]. The algorithm
is run for 3 different numbers of particles: 100, 1000, and 10,000
particles.

2. The Markov chain Monte Carlo (MCMC) using the
Metropolis–Hastings algorithm [36], a method used in the literature
to estimate the parameters of a non-smooth heat vessel model [16],
and also used for other energy demand applications [37].

3. The tree-structured Parzen estimator (TPE) [38], a black-box opti-
mization algorithm previously used in energy-related applications
[39–41].

4. A second-order Newton method where the Hessian is computed
using finite differences.

5. A first-order Newton method where the Hessian is approximated

Table 6
Parameters and variables of the optimal control problem considered for eval-
uating the proposed smooth model.

Parameter Units Description

N Number of steps for the time horizon of the
OCP.

= …T TT [ , , ]k k k,1 ,23 K Temperature distribution at time step k.

Qk
d W Given heat demand at time step k.

pk , €/J Given heat price at time step k.

= …Q QQ [ , , ]k k k
c

,2
c

,5
c W Heat added to the four buffers at time step k.

T̄0 K Initial observed temperature.

=+T G T Q Q( , , )k i i k k k1,
c d K Discrete system dynamics.

Si Set of indices of the layers in heat buffer i
Tmax K Maximum temperature in the vessel.
mmax kg/s Maximum water flow through the heat

exchangers.
Tin

d K Minimum input temperature of the discharge
heat exchanger.

Tin
c K Maximum input temperature of the charge

heat exchanger.
cp J/(K·kg) Specific heat of water.
khe W/K Heat exchanger coefficient.

Table 5
Comparison of the computation cost of using finite differences versus using
automatic differentiation.

Function Finite differences Automatic differentiation

Cost( f x: n ) cf cf

Cost( fx ) +n c( 1)· f < c4· f

Cost( fx
2 ) +n c( 1) · f2 < n c8· · f
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using the gradient through the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [42], and the gradient is computed using finite
differences.

5.4. Implementation details

The heat demand used in the OCP is the realistic heat demand
profile from a cluster of buildings in The Netherlands from 01/09/2016
to 31/10/2016. Similarly, the price of buying heat is assumed to be the
price of buying the equivalent amount of electricity in the Dutch day-
ahead electricity market in the same time period. Both quantities are
depicted in Fig. 11.

All the OCPs are solved using a time resolution of 1 h, and to study
the effect of the number of optimization variables, the OCP is solved for
4 different horizons: 1 day, 1 week, 1month, and 2months. In addition,
as the constraints (24g)–(24i) cannot be explicitly included in the
heuristic methods, they are modeled as penalty costs in the objective
function.

For the Newton-based method using the smooth model, the system
dynamics are defined as in the OCP above: using a multiple shooting
algorithm [43] where the system state (temperature profile) is an op-
timization variable and the dynamics are ensured via constraint (24c).
For the heuristic methods, in order to reduce the size of the search
space, only the input heats Qc and Qd are considered as optimization
variables. More specifically, the system dynamics are implicitly defined
by modeling each temperature profile Tk as a function of the initial
temperature T0 and the previous heat inputs. As the cost of computing
the Hessian via finite differences scales quadratically with the number
of variables, the reduced OCP formulation is also employed for the
Newton-based method that uses finite differences.

It is important to note that, as can be seen from (24a), the OCP is
solved via a direct optimal control method where the controls and states
are discretized in time and the problem is transformed into a nonlinear
optimization problem. Thus, when compared with indirect methods,
this approach has the disadvantage that, as it discretizes the controls
and states, the obtained solution is just an approximation [44]. How-
ever, unlike indirect methods, this approach is robust to the initial
approximation and requires a much lower amount of work since the
user does not need to derive the adjoint differential equations [44].

These two advantages together with the fact that the errors of direct
methods are normally lower than 1% [44], make the direct approach a
more suitable option for the current case study.

All experiments are implemented in python. The OCP using the
smooth model is solved using CasADi [31] and IPOPT [32]. The same
applies for the OCP using the non-smooth model and finite differences.
For the heuristic methods, we consider the hyperopt [45] library for the
TPE algorithm, the pyswarm library [46] for PSO, and an in-house li-
brary for MCMC.

5.5. Results

The comparison results of solving the OCP via the different methods
are listed in Tables 7 and 8. Table 7 compares the quality of the optimal
solution as the cost of buying heat and uses a baseline that represents
the cost of buying heat without using the heat buffer, i.e. buying the
heat demand at the actual market price. Table 8 compares the com-
putation time required for each of the methods. In both tables the
combinations of algorithm horizon that were unable to compute a so-
lution were marked with an x; this issue always occurred for one of two
reasons:

1. In the case of heuristic methods, the problem was always the same:
the solver was unable to find a feasible solution. Particularly, the
constraint (24h) limiting the maximum input heat was usually

Fig. 11. Considered heat demand (top) and heat prices (bottom) in the OCP.
The heat demand is the real heat consumption of a group of buildings. The
prices are the real market prices of the day-ahead electricity market in The
Netherlands.

Table 7
Comparison of the OCP optimal solution/cost (in EUR) for different time hor-
izons using different optimization methods. The best solutions per time horizon
are marked in bold. The first row represents the cost of buying directly the heat
without the heat buffer, i.e. buying the heat demand at the actual market price.
Cells with an x represent cases where the method was unable to find a feasible
solution either because the algorithm converged to an infeasible solution (in the
case of heuristic methods) or because the algorithm did not converge within
3 days (in the case of finite differences methods).

OCP horizon [h]

Optimization method 24 168 720 1440

No buffer 10.1 73.3 397.0 1761.1
Smooth model 0 16.2 215.9 1108.9
Finite-diff.: BFGS 0 16.2 235.1 x
MCMC 0 19.6 343.8 x
PSO 10000 0 38.1 2570.4 x
PSO 1000 0 361.6 3305.0 x
PSO 100 73.5 783.9 x x
TPE 41.6 x x x
Finite-diff.: 2nd order 0 x x x

Table 8
Comparison of the computation time (in minutes) required to solve the OCP for
different time horizons and using different optimization methods. The most cost
efficient solutions at each time horizon are marked in bold. Cells with an x
represent cases where the method was unable to find a feasible solution either
because the algorithm converged to an infeasible solution (in the case of
heuristic methods) or because the algorithm did not converge within 3 days (in
the case of finite differences methods).

OCP horizon [h]

Optimization method 24 168 720 1440

Smooth-model 0.1 0.6 5.1 34.9
Finite-diff.: BFGS 0.3 47.6 708.3 x
MCMC 26.4 137.6 571.0 x
P-Swarm 10000 4.2 194.3 1203.6 x
P-Swarm 1000 0.8 18.8 165.6 x
P-Swarm 100 0.2 15.9 x x
TPE 182.3 x x x
Finite-diff.: 2nd order 816.6 x x x
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violated.
2. In the case of finite differences, the algorithm was unable to find a

solution after 3 days. It is important to note that this bound of 3 days
was randomly selected to avoid situations where the algorithms
would run indefinitely.

After analyzing the obtained results, the superiority of using a
smooth model with a Newton-based optimization method and auto-
matic differentiation becomes clear. Particularly, the following ob-
servations can be made:

• The OCP solved with the smooth model is able to obtain the best
solution for all possible horizons.
• Not only is the proposed approach the one with the best optimal
solutions, but also the only one that outperforms the baseline across
all horizons. In terms of economic savings, the proposed approach
respectively reduces the baseline cost by 100%, 77%, 46%, and 37%
for the 1-day, 1-week, 1-month, and 2-months horizons.
• In terms of accuracy, the majority of the alternative methods do not
perform well: except for the shortest time horizon of 24 h, 5 of the 7
alternative methods are outperformed by the baseline and the re-
maining 2 directly fail to find any feasible solution.
• The best alternative methods are MCMC and BFGS, which can find
better solutions than the baseline for 3 of the 4 horizons. However,
they still fail to find a solution for the longest time horizon and they
are outperformed by the proposed approach in terms of both com-
putation time and the quality of the solution.
• In terms of computation cost, the method using the smooth model is
by far the best: in comparison with all the other alternatives, the
method using the smooth model finds the optimal solution between
10 and 100 times faster.

• As it could be expected, as the number of optimization variables
increases, all the methods using the non-smooth model struggle to
find optimal solutions. In the case of a 1-month horizon, only MCMC
and BFGS are able to find a solution. In the case of a 2-months
horizon, none of these methods can.

To further illustrate the good results of the smooth model, its op-
timal solution obtained for the longest horizon is depicted in Figs. 12
and 13. Fig. 12 illustrates the optimal charging and discharging strategy
considering the heat price and the heat demand. Fig. 13 depicts the
optimal temperature evolution of vessel when applying this optimal
charging/discharging strategy. As could be expected, the optimal so-
lution is to fully charge the vessel when prices are lowest, i.e. between
the last week of September and the first week of October, and then to
discharge the system to follow the heat demand.

5.6. Discussion

Based on the obtained results, it is clear that smooth models are very
important if heat storage vessels are used in optimization contexts, e.g.
if heat storage vessels are to be controlled optimally. In particular,
when solving the OCP that provides the best charging strategy for the
vessel, the smooth model provides the best yet fastest optimal solutions
by using derivative-based optimization with automatic differentiation.

This gain becomes more significant for optimization problems with
a large number of variables; in those situations, both heuristic methods
and derivative-based optimization methods using finite differences
struggle to solve the optimization problem and they use significant
amounts of computational resources. Particularly, looking at the case of
a 2-months horizon OCP, none of these methods is able to find a feasible
solution either because the algorithm converges to an infeasible

Fig. 12. Optimal charging and discharging of the vessel over the 2-months period. As it is expected, the optimal solution charges the vessel when prices are low and
discharges the system to follow the heat demand.
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solution (in the case of heuristic methods) or because the algorithm
does not converge within 3 days (the case of finite differences).
Similarly, for the 1-month horizon, only MCMC and BFGS can find a
solution; however, even in that case, the optimal solutions of MCMC
and BFGS are worse and 100 times more computationally expensive
than the one provided by the smooth model via derivative-based opti-
mization.

While they might seem surprising, these results are in fact not
unusual as the search space for the heuristic methods becomes very
large for the longer horizons: the number of variables to be optimized
are 192, 1344, 5760, and 11,520 respectively for the 1-day, 1-week, 1-
month, and 2-months horizons. In the case of numerical optimization
with finite differences, a similar problem occurs: the computation time
quickly becomes unacceptable. This property can be seen from Table 9,
which lists the time to compute the Hessian of the Lagrangian for the 4
different horizons and for the first-order and second-order methods: for
the longest horizon, the computation cost difference between using fi-
nite differences and automatic differentiation is a factor of 106 for the
second-order method and a factor of 103 for the first-order method.
Considering that computing the Hessian is done at each iteration of the
optimization process, it becomes clear why the finite differences ap-
proaches do not scale well with the OCP horizon.

In addition to the quality of the solution and the cheap computa-
tional cost, another clear advantage of the smooth model is that it
provides the only feasible alternative to be run in real time, e.g. in a
model predictive control setup. In particular, a real-time control ap-
plication would require computation times below the time step

=t 1 h, and as can be seen from Table 8, only the proposed model
satisfies that.

6. Conclusions

In this research, a new 1-dimensional model for stratified heat
storage vessels has been proposed. The model overcomes the short-
comings of the existing models from literature by providing a smooth
and continuous 1-dimensional representation of the system dynamics
while including buoyancy effects. More specifically, this is the first
model that, while remaining 1-dimensional, it is able to model buoy-
ancy using a smooth and continuous function. The combination of the
smoothness property and the 1-dimensionality of the model is critical to
efficiently integrate the model in optimization problems and to obtain
better optimal solutions while using less computational resources.
These properties allow the use of state-of-the-art derivate-based
methods which, in comparison with the optimization methods available
for the non-smooth methods from the literature, are computationally
much more efficient and lead to more optimal solutions.

In addition, the model further innovates the state-of-the-art in the
field via a second contribution. In particular, by explicitly distin-
guishing between slow and fast buoyancy effects, the model obtains a
more accurate smooth representation of the buoyancy dynamics.

To show the benefits and the accuracy of the model, we have con-
sidered a real commercial stratified storage vessel so that the model is
evaluated in a real and noisy environment. In detail, two experiments
were carried out: first, the model was validated using real data from a
large stratified thermal storage vessel. During the estimation, the ob-
tained parameters were shown to correctly identify the physical prop-
erties behind the system dynamics.

In a second experiment, the benefits of using the smooth model in
optimization problems were demonstrated: the performance of the
proposed smooth model was compared against that of non-smooth
models from literature considering an optimal control problem where
the stratified thermal storage vessel was controlled to minimize its costs
while satisfying a given heat demand. In this case study, it was shown
that the smooth model did not only result in the best optimal solutions,
but it also required computation costs that were 100 times less.

In future research, other uses for the proposed model will be ex-
plored. A possible line of research will be the inclusion of the model in a
model predictive control set-up where the heat storage vessel has to
interact with multiple markets and systems.
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Fig. 13. Optimal temperature evolution in the vessel over the 2-months period.

Table 9
Comparison of the cost of using automatic differentiation versus using finite
differences (via first-order and second-order methods) to compute the Hessian
of the Lagrangian in the OCP.

Computational cost

Finite differences Automatic

Horizon Exact Hessian Hessian-BFGS Differentiation

24 h 7.4 sa 78msa 1.5ms
168 h 43mina 5 sa 11ms
720 h 73 ha,b 32 sa 65ms
1440 h 405 ha,b 130 sa 100ms

a To reduce the computational cost of finite differences and list their best
case scenario, these costs consider the single shooting formulation where only
the control inputs are optimization variables.

b This cost is an approximation: it is computed as the cost of evaluating the
Lagrangian times +n( 1)2, where n is the number of variables in the OCP.
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