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Abstract

Recent research has seen several forecasting methods being applied for heat load forecasting of district heating
networks. This paper presents two methods that gain significant improvements compared to the previous works. First, an
automated way of handling non-linear dependencies in linear models is presented. In this context, the paper implements
a new method for feature selection based on [1], resulting in computationally efficient models with higher accuracies. The
three main models used here are linear, ridge, and lasso regression. In the second approach, a deep learning method is
presented. Although computationally more intensive, the deep learning model provides higher accuracy than the linear
models with automated feature selection. Finally, we compare and contrast the proposed methods with earlier work for
day-ahead forecasting of heat load in two different district heating networks.
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1. Introduction

The digitization effort in modern district heating sys-
tems facilitates the collection of large amounts of online
data. This data can be used to implement a range of re-
fined analysis methods in general and model generation
techniques in specific. Such models can, for example, be
used for forecasting thermal demand in a district heating
system. The ability to forecast demand is a vital com-
ponent of most optimization approaches for the operation
of the network, and this especially applies to the more
data-driven and automated approaches used in modern
4th generation networks. The primary difference between
3rd and 4th generation networks are lower system tempera-
tures, but there is also a trend in transforming more clearly
from reactive control to proactive control. Being proactive
means planning ahead, and to plan ahead successfully a
forecast of the system in question is vital. Another aspect
of this is that 4th generation networks, at least in part,
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tend to decrease the operational quality of service margins
compared to 3rd generation networks, simply due to the
fact that lower system temperatures mean network tem-
peratures closer to the delivered operational temperatures
within customer systems. Lower margins of error make
it more important for the control process to know what
is going to happen in the near future. Finally, 4th gener-
ation district heating is associated with dynamic pricing
schemes, for example based on marginal costs in produc-
tion and distribution. This is yet another aspect that in-
creases the need for accurate demand forecasts. In general,
the more complex operational environment of a 4th gen-
eration network, possibly including distributed generation
and prosumers, is a key driver in the development of more
advanced forecasting technologies.

The research in this paper builds on top of recent work
by authors [2, 3], which proposed machine learning based
approaches to solve operational day-ahead heat demand
forecasting in district heating systems, and in [4], which
shows that support vector regressor (SVR) is the best
model for forecasting the heat load of district heating.
In [2], a generic ensemble method using three different
forecasting algorithms based on extra-trees and extreme
learning machines was presented. For the proposed case
study, the best mean absolute percentage error (MAPE)

https://doi.org/10.1016/j.energy.2018.05.111
https://doi.org/10.1016/j.energy.2018.05.111


was shown to be 11.7% for the winter months. In [3], an
expert advice system was presented based on four different
forecasters: linear regression, extremely randomized trees,
feed-forward neural network and SVR. Here, with the same
case study as that of [2], the best error was shown to be
11.5 %, albeit for an extended test period including the
autumn months. In more recent work [5], a customized
recursive least square forecaster was used for forecasting
the short term greenhouse heat load in a district heating
system; the model was shown to be a simple, yet reliable
forecaster. Polynomial regression models were shown to
supplement artificial neural networks in [6]. In [4], SVR,
regression trees, feed forwards neural network (FFNN) and
multiple linear regression (MLR) were again used for fore-
casting the day-ahead heat load of smart district heating
systems; the comparison showed SVR to be the best per-
forming method.

While the research covered so far in literature has added
tremendous value, there are some gaps in it that we ad-
dress. Firstly, all the methods proposed above require
lengthy, expensive and manual feature selection. Partic-
ularly, to obtain the optimal set of explanatory variables,
the models need to be retrained multiple times, and hu-
man intervention is usually needed to analyze the results.
Secondly, the rising popularity of deep learning and its
success in several energy-related tasks [7–13], shows po-
tential for its application even in forecasting the heat-load
of district heat networks. With that as motivation, the
goal of this paper is to investigate new techniques that
consider the two afore mentioned gaps. We first investi-
gate the usage of automatic feature selection techniques
and their impact on the accuracy of heat load forecast-
ing. We compare the results of the new methods with
those in [2–4, 6], and show that these methods not only
eliminate the lengthy feature selection process, but also
lead to better accuracies. Additionally, we investigate the
usage of deep learning as a viable technique to forecast
heat load of district heat networks. In particular, we con-
sider a forward neural network with two hidden layers that
uses state-of-the-art deep learning techniques, e.g., ReLU,
dropout, training using stochastic gradient descent, and
we compare its accuracy with a range of other models.
Based on the obtained results, we show how the proposed
deep learning technique is able to generalize better and
obtain more accurate forecasts.

1.1. Contributions

In the first approach, we show how regressors based
on linear models can provide improved accuracies when
used with appropriately chosen features. In this context
we explore a family of three linear models: linear, ridge,
and lasso regression. All three models establish a linear
dependence of the target variable on the explanatory vari-
ables. The main advantage of using these models is their

simplicity: they are easy to formulate and the compu-
tational complexity of training these models is very low,
which means that they can be retrained for drifts in pa-
rameters very swiftly. However, when used naively, linear
regressors are fairly limiting as many dependencies that
need to be captured can be non-linear. This has been
demonstrated several times, where forecasters that cap-
ture complex non-linear dependencies have proven to be
superior to linear regression, for e.g., see [3, 14]. In this
paper we propose an alternative over the naive approach.
First, we encode the non-linearities explicitly as additional
features in the training process. The difficulty here is that
in most scenarios, the variables on which there are non lin-
ear dependencies or the nature of such non-linearities is not
known. To circumvent this problem, we build a super set of
features involving many degrees of non-linearities and the
valid non-linearities are chosen through a special feature
selection process. While for the simple linear regressor we
propose an explicit automatic feature selection algorithm,
the ridge and lasso regressors perform embedded feature
selection through regularization. The parameter influenc-
ing the regularization term in the ridge and lasso regressors
is chosen through hyperparameter optimization.

In the second approach, we use a forecaster based on
deep learning. This choice was motivated by the many
advances made in the field of neural nets (more recently
referred to as deep learning). These advances started with
the overcoming of challenges inherent to neural nets such
as computation cost of training large models; see [15],
where efficient training of deep belief networks was done
with a greedy layer-wise pre-training. Subsequent improve-
ments lead to efficient training of networks with multiple
hidden layers, giving better results that were applicable
to wider domains. Studying these new architectures and
methodologies was then termed deep learning, where the
term deep referred to the ability to train a neural net-
work model whose depth was not limited to a single hid-
den layer [16]. Although deep learning models were origi-
nally developed for computer science applications such as
image recognition [17], speech recognition [18], and ma-
chine translation [19], their success in energy market ap-
plications became widespread in the last two years [7–
13]. Forecasting accuracies vastly improved, especially in
wind power forecasting [10, 12] and electricity markets
[1, 13]. In particular, within the context of electricity
prices, [13] showed that deep learning models outperform
a large benchmark of 98 prediction models. Motivated by
these improvements, we extend the deep learning research
to the field of heat load forecasting.

The paper is structured as follows. Section 2 presents
the preliminary concepts used throughout the paper. In
particular, Section 2.2 and Section 2.3, present the details
of the novel techniques used for hyperparameter tuning
and feature selection. In Section 3, the basic theory be-
hind the forecasters used in this paper is presented. Sec-

2



tion 4 gives an overview of the case studies considered in
this work. Here, in addition to the heat network intro-
duced in [2, 3], the proposed methods are also tested on
an additional heat network. Finally, in Section 5, the re-
sults of the forecasting models are presented for the two
test cases.

2. Preliminaries

In this section, the theoretical concepts and algorithms
that are used and adapted in the research are introduced.

2.1. Baseline Forecasters

In order to evaluate the models that we propose in the
following sections, we consider two of the most success-
ful machine learning forecasting methods as baseline algo-
rithms. We use the SVR model considered in [3, 4] as the
first baseline model. For the second baseline model, we use
the extreme gradient boosting (XGBoost) algorithm [20],
a forecaster which is similar to the extreme tree regres-
sors model used in [3] and is also based on an ensemble of
trees. However, in contrast with the latter, it uses boosting
in place of bagging in order to build the ensemble. We use
XGBoost instead of extreme tree regressors as it is known
to obtain more accurate results in practice [21, 22].

In addition, as introduced in a later section, we also
consider the polynomial regression method of [6]. How-
ever, instead of using the polyfit function of Matlab, we
proposed a modification to perform automatic feature se-
lection.

2.2. Hyperparameter Optimization

In general, any machine learning model has some hy-
perparameters (set before training the model) determining
its performance. Needless to say, to obtain optimal results
from a model, these hyperparameter have to be chosen
appropriately. The most widely used techniques to per-
form hyperparameter optimization in the machine learn-
ing community are Bayesian optimization algorithms [23],
a family of algorithms for optimizing black box functions.
For hyperparameter optimization, the black box functions
of interest are the performance indicators of forecasters
expressed as functions of hyperparameters. Bayesian opti-
mization algorithms require a much lower number of func-
tion evaluations than other alternatives such as evolution-
ary optimization techniques or grid search. With every
sample of the black box function, these algorithms update
the prior belief used for sampling the next value. This

way, the number of samples drawn can be reduced leading
to efficient evaluation of the optimum value.

One such technique Bayesian optimization is the Tree-
Structured Parzen Estimator (TPE) [24], which is a se-
quential model-based optimization (SMBO) algorithm [25].
A SMBO method iteratively approximates the black box
function (with every sample) and finds the local optimum
of the resulting approximations. At the ith iteration, the
black box function is first evaluated at a point θi in the
parameter space. Next an approximation Fi is obtained
by fitting all the function evaluations from sample points
so far. The next sampling point θi+1 is then obtained by
optimizing for Fi. This process is continued till the maxi-
mum number of iterations is reached, and the best sample
so far is returned.

An illustration of the sequential model-based optimiza-
tion method is given in Algorithm 1. In this paper, we ex-
tensively use this algorithm for tuning of hyperparameters
of all the models.

Algorithm 1 Hyperparameter Optimization using se-
quential model-based optimization

1: procedure hyperopt(T,θ0)
2: θi ← θ0
3: P ← ∅
4: for i = 1, . . . , T do
5: pi ← TrainModel(θi)
6: P ← P ∪

{
(pi,θi)

}
7: if i < T then
8: Fi(θ)← EstimateModel(P)
9: θi ← argmaxθ Fi(θ)

10: θ∗ ← BestHyperparameters(P)
11: return θ∗

2.3. Feature Selection

As mentioned earlier, feature selection plays an im-
portant role in model estimation. Feature selection algo-
rithms can mainly be classified into three categories: filter,
wrapper, and embedded methods [26]. Each of these fam-
ilies come with their advantages and drawbacks. While
wrapper methods look for the best set of features among
the sample space of all the features, embedded methods
such as regularization methods perform implicit feature
selection during the process of estimating the model. For
the sake of completion we mention that filter methods use
certain statistical measures to select important features.
These methods do not estimate the models during feature
selection, leading to fast computation times, but with fea-
ture selections that are not entirely reliable due to the
absence of accuracy performance indicators. In compari-
son with embedded methods, wrapper methods are often
computationally more intensive (though leading to more
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objective feature selection) as the sample space of the fea-
ture set is often very large. Due to their focus on the
underlying model and complex dependence on explana-
tory variables, the methods we propose will be based on
wrapper and embedded feature selections algorithms.

To reduce the computation time of wrapper methods
but still benefit from their higher accuracy, [1] proposed
a wrapper method that reduced the number of iterations
required when performing the search across the feature
space. In particular, instead of performing a regular grid
search, it considered the TPE method, which was described
in Section 2.2, to infer the relations between selected fea-
tures and model performance, and then use these inferred
relations to guide the search. In detail, the feature se-
lection methods first model the features as two types of
model hyperparameters:

1. Inclusion-exclusion features which can be modeled
with a binary hyperparameter. These are the most
common type of features and can be used to decide
whether to use a specific input.

2. Features that represent some length. An example
could be how many days of past grid load we need
to consider in order to forecast the day-ahead grid
load. This type of feature is modeled with an integer
hyperparameter.

Then, after performing an optimization using the algo-
rithm described in Section 2.2, the procedure fine tunes
the feature selection using functional ANOVA [27].

It is important to note that this algorithm is really
beneficial when the feature space is big. Particularly, as
it infers the relations between performance and features
to conduct the search for the best set of features, we can
observe its advantages when performing a full search across
the feature space is infeasible.

2.4. Performance Metric

A performance metric is needed to evaluate and com-
pare the accuracy of the forecasters. In this paper, we use
the mean absolute percentage error (MAPE):

MAPE =
100

N

N∑
k=1

|yk − ŷk|
|yk|

, (1)

where [y1, . . . , yN ]> are the observed values and [ŷ1, . . . , ŷN ]>

the forecasted values.

2.5. Diebold-Mariano Test

While the MAPE is a good metric to provide a first
assessment, we can not infer from it a proper comparison

between forecasters. In particular, while based on MAPE
a forecater might have a better accuracy, that result might
be the product of the stochasticity of the data or the model
estimation. Therefore, to assert whether a certain fore-
caster is statistically significantly better than others, we
need to use statistical testing . In our application, we test
the statistical significance of the difference in the accura-
cies obtained by two forecasters using the Diebold-Mariano
(DM) Test, see [28].

Let [y1, . . . , yN ]> be the time series vector to be fore-
casted, and [ŷ1, . . . , ŷN ]>F1

and [ŷ1, . . . , ŷN ]>F2
be the fore-

casted values from two models F1 and F2 respectively. We
obtain the corresponding errors in forecasting [ε1, . . . , εN ]>F1

and [ε1, . . . , εN ]>F2
and define the following loss differential

function:
dF1,F2

k = L(εF1

k )− L(εF2

k ), (2)

where L is a loss function that has to be chosen so that
dF1,F2

k is covariance stationary. We use a test called the
one-sided test, very similar to the widely used two-sided
test . Here, the null hypothesis H0 is that the forecaster
F1 has the same accuracy as that of F2 and the alternate
hypothesis is that the accuracy of F1 is better than that
of F2:

H0 : E[dF1,F2

k ] ≥ 0,

H1 : E[dF1,F2

k ] < 0, (3)

where E denotes the expected value. For the test to be reli-
able, the loss differential needs to be covariance stationary,
and a loss function of the following form is typically used
to ensure that:

L(εFi

k ) = |εFi

k |
p, (4)

where p ∈ {1, 2}.

3. Forecasters

This section presents the important concepts behind
each of the forecasting models used : linear regression,
lasso regression and ridge regression for the first approach
and deep neural network for the second.

3.1. Polynomial linear regression

As the name suggests the method involves establishing
a linear relationship between the target variable y ∈ Rn

and the explanatory variables, that are columned in a fea-
ture matrix X ∈ Rm×n. Here, n is the number of observa-
tions and m is the number of explanatory variables. The
model looks as follows

y = Xθ + ε, (5)
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where θ, the parameters of the model are to be deter-
mined and ε denotes the error term (unobserved). In lin-
ear regression (ordinary least squares), the parameters are
estimated by maximizing the logarithm of the likelihood
L(θ) = p(y | θ) assuming that the errors ε are Gaussian,
i.e.,:

θ̂LR = arg min
θ

‖Xθ − y‖22

=
(
XTX

)−1
XTy, (6)

where ‖·‖2 is used to denote the `2 norm. In polynomial
regression, any non-linear dependence on explanatory vari-
ables can be encoded explicitly. For instance, a polynomial
dependence of the form

y = θ1x+ θ2x
2 + θ4x

4

on some explanatory variable x can be modeled by having
three different features in the feature matrix, one for each
degree.

While this method is similar to the polynomial regres-
sion method proposed in [6], it has a key distinction: to
handle the complexity of the large input feature space, the
method is modified to consider an automatic feature selec-
tion method. This modification is briefly motivated in the
paragraph below and explained in more detail in the next
sections.

One of the main assumptions made in this method of
finding the parameters is that the feature matrix has full
rank, i.e., that the explanatory variables are linearly in-
dependent of one-another. However, if this linear inde-
pendence does not hold due to correlated features, the
parameters obtained by this model are prone to instabil-
ities. When considering a large number of features, there
might arise co-linearities between some of the variables,
and this could lead to higher errors in the estimator [29].
Hence, we need a robust feature selection procedure to
be in place. For the least-squares estimator, we use the
method described in Section 2.3.

3.2. Ridge regressor

Ridge regression, proposed in [29] gives a method to
circumvent the problem faced by the ordinary least squares
estimator in the presence of co-linear features. The model
used here is the same as that given in (5), but in addition
to the regular assumption on ε, the model also considers a
prior Gaussian distribution p(θ) on the parameters θ and
maximizes the logarithm of the likelihood L(θ) = p(θ | y)
using Bayes rules, i.e.,:

θ̂RR = arg min
θ

(
‖Xθ − y‖22 + α ‖θ‖22

)
=
(
XTX + αI

)−1
XTy. (7)

This leads to a biased but stable estimator, even when the
matrix XTX becomes ill-conditioned due to the presence
of correlated features. The additional term in the mini-
mization expression, which models the prior distribution
p(θ), acts in practice as an `2 regularization term that
penalizes the magnitude of the parameter estimators and
that leads to an embedded feature selection. Note that the
factor α plays an important role. While very low values
of α could give results similar to that of linear regression,
very high values, can suppress the parameters more than
necessary. It thus needs to be chosen carefully, and will be
subject to hyperparameter tuning.

3.3. Lasso regressor

This regressor is an alternative to the ridge regressor
and also implicitly performs feature selection through the
regularization of the parameters. However, in contrast to
the ridge regressor, the prior distribution p(θ) is assumed
to be Laplacian, which in turns leads to a regularization
factor based on the `1-norm [30], i.e. the parameters are
estimated via:

θ̂LLR = arg min
θ

(
‖Xθ − y‖22 + α ‖θ‖1

)
. (8)

Note that the `1 norm can push the values of some pa-
rameters closer to zero compared to the `2 norm, leading
to feature selection in a stricter sense. The value of α
plays an important role here as well and needs to tuned
appropriately.

3.4. Deep Neural Net (DNN)

Several architectures of DNN’s such as the standard,
convoluted or recurrent networks have been widely re-
searched for forecasting applications; for this work, we
consider a standard DNN, i.e., the extension of a multi-
layer perceptron to multiple hidden layers.

A general DNN with two hidden layers can be repre-
sented as in Figure 1. In this representation, X = [x1, . . . , xn]> ∈
Rn is the input of the network, Y = [y1, y2, . . . , ym]> ∈ Rm

the output, nk is the number of neurons of the kth hidden
layer, and zk = [zk1, . . . , zknk

]> is the state in the kth

hidden layer,

3.5. Model Variants

For the linear models, two variants of each of the re-
gressors are implemented. In the first version, we built a
single model for all hours of the day (for day-ahead fore-
casting). In the second version, we considered a separate
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Figure 1: Example of a DNN.

model for every hour. These models are denoted by linear-
24, ridge-24 and lasso-24. The main advantage of building
a model per hour is that the available historical data can
be used more efficiently. The earlier hours can depend
on more recent lags than the hours later in the forecast-
ing horizon. The same holds even for temperature fore-
casts. The earlier hours can depend even on future fore-
casts, compared to the later hours. This has the potential
of reducing the errors in forecasting for the earlier hours
substantially, bringing the overall error down.

4. Two case studies

The two heat networks used as case studies for this
work are explained in more detail in this section.

4.1. Rottne district heating network

The district heating network in Rottne, in the south of
Sweden, was used as one of two use cases for this study.
The district heating system (DHS) in Rottne is owned by
Växjö Energi, and is operated as a stand-alone smaller
district heating system. The network itself is a traditional
3rd generation DHS, with a central heat generation plant
with a set of boilers and is connected to a surrounding
piping network with a mixed demand consisting of resi-
dential buildings, single-family houses, schools and com-
mercial buildings. The heat losses in the network vary
roughly between 10 to 20 % of the total demand, depend-
ing on seasonal variations. The total consumer base con-
sists of about 200 buildings, with a majority of 150 of those
being single-family dwellings. The rest are a combination
of offices, schools and multi-family residential buildings.

The distribution network consists of roughly ten 300
meters of piping with a total volume of about 64m3. The

production site was built and made operational in 1998.
Originally the production set-up consisted of a 1.5 MW
dry wood burner in combination with a 3 MW fossil oil
burner. Later, there was a need to use more moist wood
chip fuels, and in 2004 the wood burner was refurbished
to facilitate this. However, this lowered the heat capac-
ity to 1.2 MW. In connection with this, a second wood
chip burner with a capacity of 1.5 MW was installed. Fur-
thermore, in 2012, the oil burner was retrofitted to use
rapeseed oil based biodiesel instead of fossil oil. The com-
bination of the two wood chip boilers satisfy most of the
demand, and the biodiesel is primarily used to cover peak
load and prolonged cold streaks.

Biodiesel produced from rapeseed oil is considerably
more environmentally friendly than fossil oil. However,
it is still much more expensive than the wood chips used
for the base load, and should therefore be avoided if at all
possible. The production site is controlled based on the re-
lation between primary supply temperature and outdoor
temperature. Basically, the colder it gets, the warmer the
supply temperature needs to be. The pressure is main-
tained by automatically controlled pumps to ensure the
desired differential pressure. The wood chip boilers will
try to maintain the required supply temperature, but if
the demand is high they will not be enough and this will
cause a drop in supply temperature. This drop will au-
tomatically trigger the biodiesel boiler to start generating
heat supply. The combined heat capacity of the two wood
chip boilers is normally 2.7 MW (1.2+1.5), but since 2017
the larger boiler has been refitted to accept lower quality
wood chips. This has lowered the heat capacity slightly,
so now the total peak cap is about 2.5 MW.

The price difference between wood chips and biodiesel
is substantial. To optimize the operational behavior of
the production units, and to avoid using biodiesel when-
ever possible, a demand side management system (DSM)
is used in the DHS. The efficiency of such a system is heav-
ily linked to the ability to forecast heat demand, which is
why this study is relevant to the DHS of Rottne.

4.2. Karlshamn district heating network

The district heating network in Karlshamn is some-
what bigger than the Rottne network, although it is rel-
atively geographically close. This makes it an interesting
alternative as reference case. The Karlshamn DHS had
about 70 GWh in annual delivery when it was made oper-
ational more than 25 years ago, and currently it has grown
to about 200 GWh in annual heat delivery. About 95 %
of heat delivered is generated through excess heat from a
nearby industry, and the rest is covered by a combination
of bio-oil, fossil oil and natural gas. The network normally
peaks at about 50 to 60 MW during a normal winter.
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The distribution network is connected to a nearby pa-
per mass factory, which is the source of the excess heat.
This heat is then distributed to a nearby village as well as
to the central city of Karlshamn. In Karlshamn the heat
is further distributed to the city center as well as further
away to two other smaller urban areas. The total distribu-
tion grid is about 250000 meters and supplies about 1500
customers. Some 1000 of those are single family dwellings,
while the rest are office buildings, schools, multi-residential
buildings and public and commercial buildings of different
kinds.

Similar to the Rottne DHS, the Karlshamn DHS also
uses DSM’s to avoid or reduce peak loads. In Karlshamn
the DSM system covers roughly the hundred largest build-
ings in the DHS, and it has the capacity to reduce the heat
demand of about 10 to 15 % in total, and about 20 to 25
% in certain parts of the network. As in Rottne, the DSM
system is dependent on robust heat demand forecasting.

5. Implementation

All the code is implemented in Python. We implement
all the models using the scikit package of python. For
the GBT model, we employ the XGBoost [20] python li-
brary. For the DNN, we use the Keras [31] deep learning
library together with the Theano [32] library for mathe-
matical modeling. For hyperparameter tuning, we use the
hyperopt [33] package.

5.1. Hyperparameter Optimization

The hyperparameters that are considered and opti-
mized for each of the models are listed in Table 1.

5.2. Feature Selection

For the DNN, SVR and GBT, the following possible
input features are considered: hour of the day, day of the
week, last 7 days of heat load and temperature forecasts,
and the next 24 hours of temperature forecast. To select
the optimal subset of features for each dataset, the method
described in Section 2.3 is used.

For the linear model variants with the same model for
all hours of the day, the following super set of features is
used: hour of the day, day of the week, day of the year,
and heat load and temperature forecast starting from the
previous day up to one week in the past, and the next
24 hours of temperature forecast. The reason for using
the past information this way is that, while predicting the
24th hour from now, the model has past information only

till 24 hours in the past. This limitation is overcome in
hourly linear models, where the models for earlier hours
can depend on more recent heat load values, compared to
the models of later hours. Polynomial dependence of up
to 4th degree is added to each of the heat load and tem-
perature forecast features. While for the linear regression
model, the method in Section 2.3 is then used to find the
optimal subset of features, the ridge and lasso regressors
make use of embedded feature selection from regulariza-
tion.

5.3. DM test for heat load forecasting

We now discuss the use of the DM tests to asses the
statistical significance of the differences in forecasting ac-
curacy. The following loss differential function is used:

dF1,F2

k = |εF1

k | − |ε
F2

k |. (9)

We consider a separate time series for each hour of the
forecast horizon and perform the DM test independently
for each of these series, as in [1, 13, 34, 35]. In addition, we
also perform a DM test considering the whole loss differen-
tial and serial correlation. There are several advantages of
doing this. Firstly, the errors within a day are very likely
to be correlated, as the same historical training informa-
tion is used for all the hours. Secondly, hourly analysis
helps us distinguish between the following three cases:

1. Forecaster F1’s accuracy is significantly better than
that of F2 for all the hours.

2. The overall accuracy of forecaster F1 is significantly
better than that of F2, but there exist some hours
where the latter has significantly better accuracies.

3. The accuracy of F1 is not better that of F2.

Finally, knowing the statistical significance of hourly ac-
curacies, can help us build ensemble methods, where for
each hour, the model proven to have significantly better
accuracy can be used.

To make the distinction between the three cases de-
scribed above, we do the following one sided DM tests:

1. For every hour h and pair of models F1 and F2, a
DM test at a 95% confidence interval with the null
hypothesis in the lines of (3):

DMh

{
H0 : E[dF1,F2

h,k ] ≥ 0,

H1 : E[dF1,F2

h,k ] < 0,
for h = 1, . . . 24, (10)

where k is used to index the time series of the par-
ticular hour h.

2. For every hour h and pair of models F1 and F2, a
DM test with a null hypothesis complementary to
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Model Symbol Definition

Ridge αr Coefficient for `2 regularization

Lasso αl Coefficient for `1 regularization

SVR
C Penalty parameter of the error

ε Epsilon of the epsilon-SVR model

XGBoost

nt Number of trees

dmax Maximum tree depth

lr Learning rate

γ Minimum loss reduction needed to make a new partition on a leaf node

αx Coefficient for `1 regularization

λx Coefficient for `2 regularization

rsub Subsample ratio of the training set used for training a tree

rcol Subsample ratio of columns when training a tree

DNN

nk Number of neurons on the kth hidden layer, with k = 1, 2, 3, 4.

nonlin Activation function on the hidden layers

d Dropout coefficient

λlr The initial learning rate used for the stochastic gradient descent method.

BN Binary hyperparameter to select if batch normalization is applied.

Table 1: Summary of the optimized hyperparameter for the models.

that in (10), i.e., that the forecaster F2 has the same
accuracy as that of F1:

D̂Mh

{
H0 : E[−dF1,F2

h,k ] ≥ 0,

H1 : E[−dF1,F2

h,k ] < 0,
for h = 1, . . . 24.

(11)

3. In case F1 and F2 each have significantly better ac-
curacies for at least one hour, a regular DM test
considering serial correlation and the full loss differ-
ential, i.e., dF1,F2 , is considered:

DMsc

{
H0 : E[dF1,F2 ] ≥ 0,

H1 : E[dF1,F2 ] < 0.
(12)

Following the procedure in [1], we make the following
statements about the prediction accuracies of F1 and F2:

1. The predictive accuracy of F1 is significantly better
than that of F2 if the following two conditions are
met:

(a) The null hypothesis is rejected for at least one
of the hours for the regular DMh, i.e. F1 has
accuracy significantly better than that of F2 for
at least one hour.

(b) The null hypothesis of none of the complemen-
tary D̂Mh tests is rejected, i.e. there is no hour
where the predictive accuracy of F2 is better
than that of F1.

2. If both F1 and F2 have at least one hour in which
they have significantly better accuracies, we consider
the result of the DM test DMsc that considers the
whole differential loss with serial correlation. Then,

if the null hypothesis of DMsc is rejected, we con-
clude that the overall accuracy of F1 is better than
that of F2, although there are some hours at which
F2’s accuracy is significantly better.

6. Results

This section presents the results and comparison be-
tween the different models. For both data sets, roughly
27 months of data from November 2014 to February 2017
were available. For the first data set, we used the same
test period as in [3], i.e., months from August 2016 to
February 2017. For the second dataset, we chose the test
period closer to a heating season - end of October 2016
(28-10-2016) to end of February (27-02-2017). For the
linear models the rest of the data was used for training.
The DNN, SVR and GBT models used the first three
months of the data for validation and the rest for train-
ing. The reason for selecting these three months is twofold;
firstly, due to the lack of sufficient data we could only use
three months for validation. Secondly, as head load fore-
casting is crucial during the winter months, our test and
validation sets focus on these months.

To evaluate the error in the test set, the models are
retrained at every day so that testing is done as in real life
conditions, i.e. using the most recent data to recalibrate
the models. It is important to note that only the model is
retrained; the hyperparameters are kept fixed and equal to
the best configuration obtained during the hyperparame-
ter optimization. We would again like to stress that the
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Case study 1 Case study 2

Linear regression 9.08 4.77
Ridge regression 9.06 4.76
Lasso regression 9.09 6.75

Linear regression-24 9.88 5.03
Ridge regression-24 8.77 4.44
Lasso regression-24 9.44 4.46

GBT 9.05 4.60
SVR 11.75 4.78
DNN 8.08 4.15

Table 2: Model comparison in terms of MAPE for the two case
studies.

simplicity of the linear models used here allows for quick
retraining, and that thus retraining every day in real-time
is a feasible option.

6.1. Results MAPE

Table 2 gives the MAPE values for the different mod-
els used. Note that the deep learning model has the best
MAPE in both cases, 8.08% and 4.15% respectively. The
best linear models in both cases come second with 8.77%
and 4.44% respectively. In both cases the hourly ridge
regression gives errors very close to that of the deep learn-
ing model. Both deep learning and the best linear model
outperform the SVR and GBT forecasters with respect to
MAPE. We also note that for case study 1, while SVR
gives results similar to that in [2, 3], the models proposed
in this paper give significantly higher accuracies. It is also
important to remark that we have made improvements in
the baseline models that were used in [2, 3]. The GBT
especially gives an improved MAPE compared to the ex-
treme tree regressor that were used earlier.

6.2. Results DM test

Tables 3 and 4 summarize the DM test comparison
results for case studies 1 and 2 respectively. It is impor-
tant to note that the table’s entries are not fully anti-
symmetric, i.e., F1 not being significantly better than F2

has no implication on whether or not F2 is significantly
better than F1. Three scenarios arise:

1. The prediction accuracy of the model F1 is signif-
icantly better than that of F2, with the alternative
hypothesis being accepted with 95% confidence ( rep-
resented with 3in the tables).

2. Although F2 may be significantly better in at least
one of the 24 hours of the forecast horizon, the overall
accuracy of F1 for the full loss differential is still
statistically significantly better (represented by 3s in
the tables).

3. The prediction accuracy of F1 is not significantly bet-
ter than F2. (represented by blank entries in the
tables)
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Table 3: DM test comparison results for case study 1
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Lasso-24 3s 3s 3 3

SVR 3 3

GBT 3 3

Linear 3

Linear-24 3

Lasso

Ridge 3 3

Ridge-24 3 3 3 3

DNN 3s 3 3s 3 3 3s

Table 4: DM test comparison results for dataset 2

Figure 2 shows the DM test results of the DNN with
respect to all other forecasters used for both case studies.
By following each of the curves over the full day, one can
determine whether or not the DNN is significantly better.

Based on Tables 3, 4 and Figure 2, we observe the
following:

1. The DNN does significantly better than all the linear
models as well as the baseline models in case study
1.

2. The hourly ridge regression model is significantly
better than both the baseline models in both case
studies, and also better than the rest of the linear
models in case study 1.
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3. In case study 2, the DNN is significantly better than
both the baseline models, and four of the linear mod-
els. However, nothing can be concluded about its
performance compared to the hourly lasso and hourly
ridge regression models.

4. The baseline models are significantly better than none
of the proposed models in case study 1, and better
only compared to the linear-24 and lasso models in
case study 2.

5. In case study 1, only the DNN is better than the
ridge 24, and in case study 2, none of the models are
better than ridge-24 and lasso-24.

6. In both case studies none of the models are signifi-
cantly better than the DNN.

Overall, in case study 1 the DNN proves to be the strongest
model and the hourly ridge regression model is the next.
For case-study 2, although it cannot be concluded on which
the best model is, the DNN, the hourly ridge and hourly
lasso regressors perform the best. Particularly, we have
demonstrated that the DNN and the ridge-24 proposed in
this paper are significantly better than the state-of-the-art
models.

7. Conclusion and future work

We have shown that simple linear models can be very
powerful in forecasting heat loads in district heating net-
works when non-linearities can be accounted for and au-
tomatic feature selection is done. In particular, they can
outperform many of the advanced machine learning fore-
casting tools and the state-of-the-art methods proposed
in literature such as SVR and GBT. The ridge regressor
with hourly models proved especially powerful in both the
use cases, giving a MAPE as low as 8.77 in the first case
and 4.44 in the second. This model even proved better
even with respect to the DM test and performed nearly
as well as the deep learning model. We also showed that
deep learning models provide the best accuracies overall in
terms of of both MAPE (8.08 and 4.15) and the DM test,
provided enough computation time is available.

The data used for this study was collected from two
district heating systems in Sweden. The Karlshamn net-
work, operated by Karlshamn Energi, uses industrial ex-
cess heat from an external source to cover more than 90%
of the yearly energy demand. Since they are not fully in
control of this heat supply, they are dependent on forecast-
ing the demand as accurately as possible. The other grid
is the Rottne district heating system, operated by Växjö
Energi. The Rottne grid has been used as a demonstrator
in the Horizon 2020 project STORM the last few years, in
which an advanced grid controller has been deployed. Such

grid controllers are dependent on accurate load forecast-
ing and the results presented in this paper will contribute
to an even higher level of efficiency in the grid. For both
of these cases, the techniques presented in this study will
facilitate increased operational efficiency. In general, it is
expected that the results will contribute to the further de-
velopment of modern grid controllers for 4th generation
district heating and cooling.

We also foresee these forecasters to be used in other
project contexts, especially to predict the electricity load
of a cluster of buildings; particularly, as the heat and elec-
tricity consumptions of households follow similar patterns,
i.e., trend, seasonality, the proposed methods could poten-
tially be easily extended to the latter. This is an important
area of research in the field of demand response. In the
next step we also want to include these improved fore-
casters in an expert advice system. Additionally, having
statistical significance results for each hour, we can even
consider an ensemble of forecasters, where for each hour
we can choose the best model for that hour.
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Figure 2: DM results for the DNN model. Top: test results for case study 1. Bottom: test results for case study 2. Values above the top
dashed line represent cases where, with a 95 % confidence level, the DNN is significantly better. Similarly, values below the lower dashed line
accept at a 95 % confidence level that the DNN is significantly worse.
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