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In this paper, we propose a data-driven methodology to identify the optimal placement of sensors in a
multi-zone building. The proposed methodology is based on statistical tests that study the (in) depen-
dence of measurements from various available sensors. The tests advice on a set of most dissimilar sen-
sors to be retained, as they would convey the maximum information. The method starts with an initial
setup that can provide measurements of every building zone to carry out this study; any of these sensors
can be removed eventually to decrease costs in normal operation. The method has the advantages of
being purely data driven and computationally efficient, as against several methods proposed in the sci-
entific literature, that operate under the premise that detailed building models are available, to evaluate
the number/position of the required sensors. This property makes the method scale to different buildings,
in an expert free manner. The methodology can help towards better characterization of a building for
optimal control and monitoring applications. It is validated against a widely used method – Kalman fil-
tering with Grey-box models, using two different case studies. In both cases, the proposed approach
agrees with the results using grey box models, suggesting that the method is reliable, while being quick
and efficient.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Buildings account for over one third of the final energy usage
worldwide [1]. Optimal control of their energy use is hence crucial
in advancing towards a sustainable future. To accommodate this,
advanced building control is being intensively researched in the
recent years to achieve significant energy savings [2]. Moreover,
the European Energy Performance in Building Directive (2018) sets
direct requirements for Building Automation System (BAS) [3].
However, these advanced controllers usually need a predictive
model that requires a set of sensors to estimate the thermal state
of the building [4]. The thermal characterization of the building
state is hence a critical step to ensure optimal performance of these
controllers. While there is ample literature and ongoing research in
data driven building models, there is still a lack of methodologies
for the selection of the number and location of sensors that provide
these data. For instance, the Energy in Buildings and Communities
Programme of the International Energy Agency carried out an
extensive study in Annex 58 to gather an inventory of full scale test
facilities for evaluation of building energy performance [5] with an
overview of methods to analyse dynamic data [6]. This project was
oriented towards the thermal characterization of building compo-
nents [7] using the data, and not on the design of where the data
comes from, i.e. number and location of sensors. Particularly, the
sensors are currently installed in an ad hoc manner without con-
sidering operational costs and control performance. In this context,
the number and placement of sensors are two important factors. In
general, the more the sensors, the more the information that can be
retrieved directly from the system. However, the setup and main-
tenance of multiple sensors is likely to be expensive and can lead
to redundant information and hence, a trade off will be required
here.

To address the challenge for optimal placement of sensors, two
types of methods exist: model based methods and data driven
methods. The majority of the research that exists focuses on model
based methods. For instance, [8] uses a Kalman filter approach to
identify the number and placement of sensors. In [9], a building
energy simulation is used for the same purpose. A model based
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approach is also suggested in [10] for optimal placement of sensors
for fault detection and diagnosis in smart buildings. The field of
optimal experimental design is a closely related topic, where
experiments are designed to get the best results for system identi-
fication [11,12]. However, these are also model based methods, and
require an a priori information about the application and models.

In another related field, research on optimal placement of sen-
sors for monitoring the structural strength/health of buildings
focus on the use of information entropy based approaches, see
for e.g., [13,14] and the references there in. These methods also
need a clear definition of the model to determine the entropy or
uncertainty in the model parameters and differ from the purely
data-driven technique proposed in this manuscript in that sense.

Although model based approaches have the advantage that
physical characteristics of the system are taken into account, their
disadvantage is that they heavily rely on a modeling procedure.
Specifically, the sensor placement decisions will depend on the
model training procedure, and can further vary based on the model
that is chosen. Moreover, such a procedure often needs a good
understanding of the system, and substantial human expert inter-
vention would be necessary to get the method working for each
individual building.

Data driven models overcome these limitations by depending
purely on measurements, and can be used across buildings in a
human expert free manner. Despite their advantages, to the best
of our knowledge, research on purely data driven methods that
rely on advanced metrics is limited. In [15], a purely data driven
technique based on k-means is suggested for ranking the sensors.
However, the information loss here is biased towards sensors with
larger amplitudes. Moreover, the k-means is an incomplete (low-
dimensional) metric when analyzing the complex dependencies
between sensors, and the method is not validated against other
methods.

1.1. Contributions

In this work we aim at filling the above mentioned gap. We pro-
pose a purely data driven methodology, which uses advanced met-
rics, to evaluate and identify the particular zones of the building
where zone air temperature sensors should remain. The main
motivation behind this methodology is that it is model agnostic,
which means that the results are generalizable to any type of
model or control strategy. As an additional advantage, the method-
ology has small computational times.

The proposed methodology is based on statistical tests to iden-
tify the probabilistic dependency between different pairs of sen-
sors within a building. We start with the premise that the initial
setup provides measurements from multiple sensors already in
place, and that any of them can be removed afterwards to decrease
costs in normal operation. In detail, the methodology assumes that
the dependency between any pair of sensors comes from proximity
and the ability of zones to influence one another. Therefore, a pair
of sensors that are highly dependent would imply that one of the
sensors could be redundant and could be removed. In this context,
the simplest criterion to test dependency between variables would
be to check the covariance or the Pearson correlation coefficient.
However, the problem with using this metric is that it captures
only linear relationships, i.e., it falls short in giving information
about more complex non-linear relationships, and is also sensitive
to outliers. For this reason, the proposed methodology uses the Hil-
bert Schmidt Independence Criterion (HSIC), which is based on
kernel independence measures using reproducing kernel Hilbert
spaces (RKHSs) [16,17], to determine linear and non-linear depen-
dencies. This metric is more robust than the Pearson correlation
coefficient as it is less sensitive to outliers and can identify non-
linear relationships. Yet, it can be interpreted in a similar way:
2

the larger the metric, the larger the dependence. Although we refer
to [17] for a detailed explanation on how HSIC can capture nonlin-
ear relations, it is important to note here that the method is based
on expressing functions in infinite dimensional spaces. In this con-
text, the function spaces impose some norm and smoothness con-
straints to avoid overfitting the data, e.g. to avoid having all
sensors related to each other (in the context of sensor placement).
A second property to be noted is that the results are independent of
the kernel used as long as the kernels have the so called ”universal”
property [17] and, in practice, there are a wide range of kernels
that satisfy this property (see [17] for details).

To study and demonstrate the use of the proposed methodol-
ogy, we consider two case studies. First, we apply the proposed
methodology to both case studies to perform the feature selection.
Then, we implement a standard model-based approach to validate
the results of the novel methodology. Based on the empirical
results we show that the proposed methodology is a reliable
method to select the important sensors in a building.

It is important to note that the proposed method is the first that
avoids using a model (existing literature relies on model-based
approaches) for selecting the sensors in buildings. This is impor-
tant and beneficial because it removes/reduces the need for model
identification, a process that in the case of buildings is nonconvex
and without converge guarantees. In addition, although we focus
on the paper on temperature sensors, the method can be applied
on a heterogeneous set of sensors, and finds the dependencies in
the underlying probability distributions.

Second, it is also important to remark that the method assumes
that the initial setup can provide measurements of every zone to
carry out this study, but that any of them can be removed after-
wards to decrease costs in normal operation. It is specifically use-
ful, when temporary reusable sensors may be located in the
building to generate the data required for the novel sensor place-
ment approach. The final number of sensors to be retained then
depends on the trade off between the costs and the application
requirements.

1.2. Organization of the paper

The rest of the paper is organized as follows. Section 2 explains
the methodology in detail. Section 3 describes the procedure to
validate the proposed approach with a model-based solution. Sec-
tion 4 introduces the two case studies and Section 5 presents the
results. Finally we make some concluding remarks and suggestions
in Section 6.

2. Studying sensor dependence with HSIC

The most widely used metric while studying the dependence of
two variables is the Pearson correlation coefficient. Given pairs of
samples fðx1; y1Þ; . . . ; ðxn; ynÞg, it is defined as

rðx; yÞ :¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � �xÞ2Pn

i¼1ðyi � �yÞ2
q : ð1Þ

The problemwith using the above metric is that it captures only lin-
ear relationships. It fails to give information about complex non-
linear relationships and is also sensitive to outliers. These limita-
tions are illustrated with several data sets. See Fig. 1, where there
is a clear dependence of variable y on variable x; however the Pear-
son correlation coefficient between the variables is only 0.02, indi-
cating negligible dependence. Also for instance, the data sets shown
in Figs. 2 and 3 are vastly different on visual inspection. The vari-
ables in Data set 2 seem not to be correlated. In contrast, the vari-
ables in Data set 3 seem to be very correlated. However the
Pearson correlation coefficient of both these data sets is 0.812.



Fig. 1. Data set 1: correlation coefficient = 0.02, p-value of HSIC based statistical test
= 0:0.

Fig. 2. Data set 2: correlation coefficient = 0.812, p-value of HSIC based statistical
test = 0:9.

Fig. 3. Data set 3: correlation coefficient = 0.812, p-value of HSIC based statistical
test = 0:0.
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Hence, the Pearson correlation coefficient is not a reliable metric in
trying to understand the dependence between various variables in a
data set.

To overcome the shortcoming of the Pearson correlation coef-
ficient we use another metric called the HSIC (The Hilbert–Sch-
midt Independence Criterion). The HSIC is a measure for the (in)
dependence of variables, i.e., the higher the score, the more
dependent the variables are on each other. The metric itself and
the approach where it is used in are explained in the following
two subsections.

2.1. HSIC

The explanation of HSIC presented in this section is based on
[16,17]. Let us define PðX;YÞ as a Borel probability measure [18]
defined on the domain X�Y, and X and Y as the associated ran-
dom variables. The problem that we are addressing here is to find
out whether PðX;YÞ factorises as PðXÞPðYÞ where PðXÞ and PðYÞ are
the (marginal) distributions defined on X and Y respectively, i.e.
whether the random variables X and Y are independent. To answer
that question, we use a kernel based approach for finding depen-
dence between variables. Particularly, we use the HSIC, which is
an empirical estimate of the Hilbert–Schmidt norm of the cross-
covariance operator. The HSIC has a zero expected value if and only
if the corresponding random variables are independent.

The first step of the method is to define the HSIC. For that, we
start with two reproducing kernel Hilbert spaces (RKHSs) F and
G (see [19]) on the compact domains X;Y, with orthogonal feature
sets /ðxÞ 2 F (8 x 2 X) and wðyÞ 2 G (8 y 2 Y). Then, the HISC can
be defined as:

HSIC PðX;YÞ;F;Gð Þ ¼ Ex;x0 ;y;y0 ½kðx; x0Þ‘ðy; y0Þ�
þEx;x0 ½kðx; x0Þ�Ey;y0 ½‘ðy; y0Þ�
�2Ex;y½Ex0 ½kðx; x0Þ�Ey0 ½‘ðy; y0Þ��

ð2Þ

where kðx; x0Þ and lðy; y0Þ are the kernels of the RKHSs F and G

respectively. Note that, for some chosen kernels,
HSIC PðX; YÞ;F;Gð Þ is zero (see [16]) if and only if X ? Y .

The second step of the method is to estimate the HSIC based
on the data samples that are available. Particularly, given inde-
pendent and identically distributed samples fðxi; yiÞgni¼1, a biased
estimator of the HSIC that converges at a rate of Oðn�1=2Þ is given
by:

HSICðZÞ ¼ 1
n2 traceðKHLHÞ ð3Þ

where K; L;H 2 Rn�n, and where Kij ¼ kðxi; xjÞ; Lij ¼ kðyi; yjÞ, and
H ¼ I � 1

n1n1n, with 1n being a vector of n ones. The cost of comput-
ing the above estimate is Oðn2Þ. Note that the kernel that we used
for the computations in this paper was the Gaussian kernel, that
satisfies all the conditions for the results to hold.

As a final step, a statistical test is built on top of the metric
defined above to determine the statistical significance of depen-
dence/independence inferred from using the HSIC. For more details
on the method, see [16,17].

2.2. Statistical testing for variable dependence

In order to state that two sets of (temperature) measurements x
and y are dependent or independent, we build a hypothesis test set
up as shown in Eq. (4) and Eq. (5).

H0 : Pxy ¼ PxPy ð4Þ
H1 : Pxy – PxPy ð5Þ
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where Eq. (4) is the null hypothesis stating that both variables are
independent and Eq. (5) is the alternate hypothesis that indicates
that both variables are dependent.

To evaluate the hypothesis test, we compute the HSIC between
x and y, and we compute the HSIC under the null distribution, i.e.,
assuming that they are indeed independent. To compute the distri-
bution of the HSIC under the null hypothesis, we randomly per-
mute one of the two series and compute the HSIC. As the
permutation breaks the pair-wise interaction between x and y, it
provides a correct representation of the HSIC when x and y are
independent. Repeating this step for multiple permutations, the
empirical distribution of the HSIC under the null distribution is
obtained. Finally, we use this distribution to evaluate the real HSIC.
If the probability of the real HSIC between x and y under the null
assumption is below a threshold, we reject the null hypothesis,
i.e., we consider the variables as dependent. This threshold is usu-
ally 5 %, and the probability of the HSIC is the p-value of the statis-
tical test given by

p ¼
P

w2S1hxy<hxwðyÞ

jSj : ð6Þ

In Eq. (6), w indicates the permutation operator, S is the set of all
permutations and hxy is the HSIC value of the measurements x
and y. If p < 0:05;H0 is rejected and the variables are dependent
with 95% confidence.

To highlight the benefits of this test in comparison to that of
Pearson correlation coefficient, we compare the results of applying
this test for the data sets in Figs. 1–3, where the correlation coeffi-
cient had suffered from non-linearities and outliers. For the data
set in Fig. 1, the p-value is 0, which suggests that the null hypoth-
esis can be rejected and hence the variables are dependent. The
non-linear dependence in the data set is thus well captured by
the statistical based on HSIC, in contrast to the Pearson correlation
coefficient. For the data set in Fig. 2, the p-value is 0.905, which
implies that the null hypothesis cannot be rejected, suggesting this
test is resistant to outliers that give false positives for dependence.
For the data set in Fig. 3, the p-value is 0, which suggests that the
null hypothesis can be rejected and hence the variables are depen-
dent. This is also a test for robustness against outliers, as the p-
value is not affected by the single outlier.
2.3. A greedy algorithm

As mentioned previously, we assume that the initial setup can
provide measurements of every zone to carry out this study, but
that any of them can be removed afterwards to decrease costs in
normal operation. Due to heat flows and proximity, the sensors
with in a building can (very) often be dependent on one another.
In this case, the p-value alone is not enough for the sensor place-
ment problem, and a more closer look at the HSIC itself is neces-
sary. Given a set of dependent sensors, the following algorithm
can be further used to choose which sensor among them can be
removed. Let hðs1; s2Þ denote the value of HSIC between sensors
s1 and s2. Further, let S be a set of sensors, and define the aggre-
gated HSIC of a sensor s R S w.r.t the set S as

rðs; SÞ ¼
X
si2S

hðs; siÞ:

Clearly, the larger the value of rðs; SÞ, the larger the dependence
between the given sensor s with those from the set S. Conversely,
the smaller its value, the further away is the dependence between
s and the sensors in S. Next we define by n the number of sensors
to be retained, and by U the set of all sensors. Given these defini-
tions, the proposed methodology is defined by Algorithm1.
4

Algorithm 1: Algorithm for ranking sensors.
The proposed methodology is based on selecting one sensor at a
time. For that, it considers two sets: a set U containing the sensors
that have not yet been selected and a set S containing the sensors
already selected.

The first step of the methodology is to select the sensor with the
largest aggregated HSIC w.r.t. the other sensors, i.e., largest depen-
dency with the other sensors. This first step guarantees that, if a
single sensor is needed, the selected sensor maximizes the amount
of thermal information. After this first step, S contains one sensor
and U all sensors but the selected one.

If a second sensor is required, the methodology selects the sen-
sor in U with the smaller aggregated HSIC w.r.t. the other sensors
in S. As the first sensor was already highly correlated, this step
guarantees that the second sensor is the most independent from
the sensor in S, i.e., it guarantees that the second sensor includes
information from the area where information is less redundant.
Any sensor added to S should be appropriately deleted from U

(denoted by U ¼ U n S in the algorithm).
After this, the second step is repeated to include as many sen-

sors in S as needed, each time picking the most independent sen-
sor from the sensors in S.

2.4. Properties of the method

The proposed method has several properties that make it a
great alternative to model-based approaches; some of these prop-
erties improve upon the drawback of model-based approaches,
while others are useful features in real-life applications. In this sec-
tion, we describe and explain these properties.

2.4.1. Computational cost
A first advantage of the proposed method is its computational

cost. In particular, given n sensors, the computational cost of the
method is a deterministic value that can be computed as follows:

ccomp ¼ n
2

� �
cHSIC ¼ nðn� 1Þ

2
; ð7Þ

where cHSIC is the cost of computing the HSIC metric. Thus, the com-
plexity of the algorithm is Oðn2Þ, i.e. it has polynomial running time.

In contrast with the cost of the proposed method, model-based
approaches have to rely on non-convex optimization problems to
identify the building parameters. Such approaches are NP-hard
[20] and have no convergence guarantees.

Besides the algorithm complexity, the proposed approach is
fully parallelizable. In particular, as it computes the HSIC metrics
for each pair of sensors, such a computation can be parallelized.
Thus, assuming that we have available nðn�1Þ

2 cores/threads, the cost
of the proposed approach is the cost of a single HSIC computation
(which is typically a matter of seconds).

As a result, the proposed method improves upon the existing
literature by providing a fast and reliable method with conver-
gence guarantees. To validate this claims, in this article we will
compare a model-based approach and the proposed method; for
details, we refer to Section 5.2.
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2.4.2. Initial sensor placement Independence
A key property of the method is that it is independent of the ini-

tial sensor placement. In particular, the initial sensor placement is
determined by the distribution of zones. Thus, if we have a building
with 5 thermal zones, e.g. rooms, we would initially have a sensor
per zone. That is fixed and, given a building, has no room for
change.

While it is true that within a zone a sensor could be placed in
more than one location, the paper does not study the distribution
of sensors within a zone as it is a science by itself where sensor
placement must satisfy multiple requirements, e.g. it has to be
located in an internal wall and/or out of solar radiation.

2.4.3. Multiple sensors per zone
Although the case of multiple sensors per zone is not specifi-

cally studied in this paper, the proposed method is still applicable
for the same. In such a scenario, the method is model and zone
agnostic and simply provides the optimal selection of sensors that
contains the most information. Thus, even for the case of large
areas with multiple sensors, the method will evaluate nonlinear
relations from the sensors and select those sensors that maximize
the system information.

Unlike the proposed method, standard model-based approaches
are more dependant on sensor location as they require mapping
sensors to zones/model state. Hence, in the case of having multiple
sensors per zone, model-based approaches will struggle to select
the optimal sensors.

2.4.4. Limited data requirements
To ensure that the proposed method works, the data-set must

contain enough data to accurately represent the underlying proba-
bility distribution. Based on experimental results, this translates to
having 100–200 well spaced and distributed data-points. In the
case of buildings, that means that 1 week of data at hourly inter-
vals would suffice: 1 week ensures that the variability in the data
is enough; one hour intervals guarantees that there are 150+ data-
points available.

The data requirements for the methods is also a nice property in
comparison with model-based approaches. The latter, as they rely
on a non-convex parameter identification procedure to estimate an
approximated model, often require a larger number of data-points
to reliably identify the dynamical model.

2.5. Applications of the method

The proposed method has multiple applications where it is
expected to perform better than existing model-based approaches.
A first application is the characterization of the building indepen-
dently of the final usage of the sensors. Usually, sensor data has
multiple applications in the context of building: verifying simula-
tions, system identification, model predictive control, etc. For each
of these applications, a different model is usually considered, i.e.
simulating the building would normally consider a higher fidelity
model than a controller. Thus, if a model-based approach is used
to optimally select the sensors, it is clear that we would have as
many model-based approaches (and in turn sensor selections) as
final applications for sensor data. As only one sensor selection is
possible, we need a method that can provide the optimal subset
of sensors independently of the final application, i.e. model. The
proposed method can satisfy this requirement and accurately
select a subset of sensors independently of any underlying model.

In addition to that application, the proposed method is also very
useful in the construction phase of the building. There, sensors are
placed within the walls of the building and a method is needed to
select the optimal location. At this stage, the building is not yet
characterized and accurate models are often lacking. In this situa-
5

tion, the proposed approach can provide an accurate selection of
the locations even when models are not available. Not only that,
but the method can even be used to select the best location for
each sensor within a given room as no model assumptions are
needed.

2.6. Limitations of the method

Despite its numerous advantages, the proposed approach might
have some limitations w.r.t certain applications. In this section, we
discuss the potential limitations, we explain how these limitations
compare to model-based approaches, and describe how these lim-
itations can be overcome.

2.6.1. Data gathering
A potential drawback of the proposed method is that it requires

the evaluation of sensors in multiple places. This requirement can
be infeasible in several real-life scenarios as the cost of gathering
temperature data in multiple locations can be difficult and expen-
sive. To tackle this, one could use high fidelity models to gather
reliable data from simulations. Initiatives such as the IDEAS [21]
Modelica library or the BOPTEST project [22] may be of great help
for this task. These libraries facilitate the modeling of not only the
heat transfer between the different building components, but also
of the air exchanged among the building zones.

2.6.2. Optimality of the solutions
A second potential limitation of the proposed method is that the

obtained solutions are not optimal in a strict sense. However, it is
important to note that, since model-based approaches rely on a
parameter identification process that is non-convex, the obtained
solutions of traditional model based approaches cannot guarantee
global optimal minima either. However, unlike model-based
approaches, the proposed method is faster and avoids the lengthy
and costly parameter identification step.

2.6.3. Cost evaluation
Finally, the proposed model does not provide a direct link to the

cost vs. gains of adding a new sensor. In particular, with a model-
based approach, we could compare the gains due to the increased
accuracy of adding one extra sensor. However, performing the cost
benefit analysis w.r.t improved accuracy is nevertheless not possi-
ble even with model based methods.
3. Validation based on grey-box models with Kalman filter

For validating the proposed methodology, we implement a con-
ventional model based approach. The model used here is based on
a grey-box building model structure. Grey-box modeling is a typi-
cal approach for optimal control in buildings because of its bal-
anced trade-off between accuracy, robustness and complexity
[23,4,24].

3.1. Grey-box model

First, an RC network is built by connecting thermal resistances
and capacitances as lumped parameters. An initial guess of the
parameters is derived from actual physical properties of the build-
ing system. Then, monitoring/measurement data is used to train
the model to identify the parameters of the model. For the purpose
of validation, a centralized multi-zone grey-box model is identified
for each of the test cases envisaged in this study. A multi-zone
model is required because the model should output the tempera-
ture estimates of each individual zone in the building. Eq. (8)
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shows the dynamics driving the variations of each of the zonal
temperatures as described by a grey-box model:

Cz
dTz

dt
¼ _Qhz þ

X
a2A

Ta � Tz

Raz
þ Te � Tz

Rw
þ g _QSun; ð8Þ

where Tz is the temperature of zone z with an air thermal capaci-
tance of Cz and _Qhz is the heat released to that zone for building
acclimatization. The second term at the right side of the equation
represents the heat exchanged between zone z and an adjacent
zone a through the thermal resistor Raz, where A refers to the set
of all adjacent zones connected to z. Notice that doors remain either
opened or closed during the experiments, and therefore a single
thermal resistor is considered enough to model the heat transmit-
ted between the zones. Te denotes the exterior temperature, and
the corresponding term accounts for the heat exchange with the
zone through a wall thermal resistor Rw. The last term indicates
the thermal power added to the zone due to solar irradiation,
_QSun, where g is the parameter representing the solar admittance
the wall glazing-structure of that zone. Other thermal states may
be included in a single zone model as well, such as an internal wall
state, or an extra internal state representing furniture and indoor
walls. For the sake of simplicity, we limit the description of the
grey-box models to this extent.
3.2. Kalman filter definition

We use the Kalman filter [25] along with the grey-box model
explained above, to track the hidden states, i.e., states where sen-
sor measurements are (considered) absent. For this purpose, the
continuous time state space model described by Eq. (8) is first dis-
cretized in time using zero order hold on the controllable heat

inputs to the zones _Qhz to obtain the following set of equations:

xk ¼ Adxk�1 þ Bduk�1 þwk�1

yk ¼ Cdxk þ vk;
ð9Þ

where Ad; Bd; Cdand Dd are the matrices of the discretized dynam-
ics. Further, xk is the vector of the states at time step k, i.e., the tem-
perature of each zone, uk represents the input (heat input, solar
irradiation, and external temperature) to each zone at time step
k;w represents the model error and v is the measurement noise.
Note that the matrix Cd encodes the number of states for which
measurements are available. For the derivation of the state space
matrices, we refer to [26]. Next, the Kalman filter iterations are per-
formed as follows:

� First a-priori covariance is calculated as P�
k ¼ AdP

þ
k�1A

T
d þ Qd,

where Qd is the covariance matrix of the model error.

� Next, the Kalman gain is calculated as Kk ¼ P�
k C

T
dðCdP

�
k C

T
d þ RdÞ

�1
,

where Rd is the covariance matrix of the measurement noise.
� The a priori state estimate is then x̂�k ¼ Adx̂þ

k�1 þ Bduk�1.
� The a posteriori state estimate is given by x̂þk ¼ x̂�k þ Kkðyk � Cdx̂�

k Þ
� Finally, the a posteriori covariance is calculated with
Pþ
k ¼ ðI � KkCdÞP�

k

These steps are repeated for every time step. Note that P0 (or Pþ
0 ),

x̂0;Qd and Rd need to be initialized properly, based on measure-
ments and model errors.
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3.3. Implementation

We implement the Kalman filter as follows:

� We start from a case with temperature readings from the sen-
sors in all zones. Then, we simulate the values of the indoor
temperatures using all measurement updates in every iteration.

� The error from the above procedure is assumed to be the min-
imal achievable error as the state is estimated with the maxi-
mum available information. This error is used as the reference
for comparison.

� Then, for each case of sensor combinations, the vector v and
matrix Cd is updated to have measurements only from the re-
tained sensors. This means that the model is updated only with
the measurements available from the included sensors, and
thus, the estimates at the other zones need to be done in the
absence of sensor measurements.

� The error is calculated for all estimates (including those for
which sensor measurements were not taken into account),
and is compared against the reference error.

� Based on the errors calculated above, ranks are assigned. For
instance, if from a set of 5 sensors, 4 have to be retained, there
are 5 ways of doing so, and each of the 5 combinations is given a
rank using the errors calculated above.

� These ranks are then used to validate the combination picked by
the statistical method.

4. Case studies

The novel sensor placement methodology has been imple-
mented in two test cases. The first one consists of real data coming
from the Twin Houses experiment [27]. The added value of using
real data is that the building is prone to actual disturbances and
measurement noise leading to a realistic scenario to run the sensor
placement methodology. The second one uses the Building Opti-
mization Testing framework (BOPTEST) framework [22] to interact
with a virtual building that allows the generation of different eval-
uation data sets.
4.1. Twin house data

The twin houses experiment is a well-known experiment in the
building modeling community that has been used by different
authors e.g., [28–30], to prove their modeling techniques. It pro-
vides detailed measurement data of an experimental dwelling in
Fraunhofer IBP (Holzkirchen, Germany) with not only the temper-
ature of every zone, but also the heat input released to each. Two
data-sets are available for about 40 days each: the first one
between August and September 2013, the second one between
April and May 2014. We decide to use the second one because
the lower outdoor temperatures are more representative of a heat-
ing season and because the blinds were open during such experi-
ment, leading to a more realistic scenario accounting for the
impact of irradiance.

The house consists of a cellar, a ground floor and an attic. The
layout of the house is shown in Fig. 4. The adjacent zones (cellar
and attic) are held at a constant temperature of 22 �C. Also the
three rooms at the north face of the dwelling are sealed from the
others and kept at 22 �C. On the contrary, the rest of the rooms
at the ground floor maintain their doors opened, substantially
facilitating heat exchange between them.



Fig. 4. Layout of the experimental dwelling (called Twin house) ground floor.
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4.2. BOPTEST variable air volume building

For the second case study, a simulation model is chosen to gen-
erate and test the methodology with different sets of data using the
BOPTEST framework. The Building Optimization Testing frame-
work (BOPTEST) is an open source initiative offering an ensemble
of detailed building models to be used as a common benchmark
to evaluate different advanced control algorithms in buildings.
The data sets used here are generated by implementing different
heating input profiles in one of the BOPTEST building test cases,
while keeping the same disturbances, i.e., weather, occupancy
and internal gains. This allows us to fairly evaluate the impact of
the data.

We use the BOPTEST commercial multi-zone air-based test case
that comprises the variable air volume building model from the
Buildings Modelica library [31]. This freely accessible model is fully
documented and has been accommodated for its use in BOPTEST.
However, it is not yet considered a final test-case version thus
slight changes may apply for future BOPTEST users.

A schematic of the building energy system is shown in Fig. 5.
The building consists of five thermal zones: core, south, east, north
and west, an air based HVAC system, and air flow models of the
building leakage and between the zones.
Fig. 5. Schematic of the BOPTEST variable air volume building system used to test the m
HVAC system with reheating. Figure obtained from the documentation of the Modelica
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The first set of data (called baseline) is generated from the sim-
ulation of the model using the default baseline controller. Two
weeks are simulated in the winter period and with the weather
conditions coming from a TMY3 file of the location of Chicago, Illi-
nois. Different variations of the baseline controller are realized in
order to obtain richer dynamic data. These data variations are
gathered from the same time period and ambient conditions, but
with different controllable inputs.

In the first variation (called 1 day) the lower bound temperature
set-point of the comfort range is excited to its upper bound for one
zone at a time. The excitation at each zone persists for one day.
Then it stops and a new zone starts being excited. The goal is to
increase the temperature of one room at a time to its maximum
allowed comfort bound. This may increase the energy use, but
should not significantly affect comfort since the set-points remain
within the actual allowed comfort range. As a result, we stimulate
the thermal interaction between zones to unlock any possible
dependencies that could be hidden in the baseline scenario due
to its intrinsic steady-state functioning.

The second variation (called constant) supposes only a slight
modification to the first one. An excitation period remains where
every zone is excited one day at a time. However, an extra day with
the same constant temperature in all zones is included as well.
ethodology. The model consists of a five-zone building envelope and an air-based
Buildings Library [31].
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During the latter period, all zone temperatures are kept at the mid-
dle of the comfort range. This practice is found to be favorable for
the grey-box parameter estimation process.

Finally, in the last variation (called random) from the baseline
controller, a more variable set of input signals is applied. In this
case, the comfort range is collapsed into a unique temperature
set-point per zone. These set-points are randomly drawn from a
uniform distribution ensuring that there is no dependency
between the heat delivered to the rooms (pair-wise).
4.3. Limitations of the case study

It is important to note that the case studies only consider a lim-
ited number of sensors. While this might seem a limitation, it is
actually a design choice to ensure that the proposed method can
be properly validated: if we were to consider large-scale complex
buildings, while the proposed method would not suffer from scal-
ability issues, the traditional methods required to compare the pro-
posed method will. In detail, as explained in Section 2.4.1, the
proposed method is fully parallelizable and has a complexity of
Oðn2Þ, where n is the number of sensors. In contrast, standard
model-based approaches require solving NP-hard problems and
have no guarantee of convergence. As a result, in this study, we
have limited the analysis to small-scale buildings where the stan-
dard model-based approach is tractable.

A second potential limitation of the case study is the fact that
we only consider multi-zone models but not open areas with mul-
tiple sensors per zone. The limitation in the case study is a design
choice to compare the proposed approach with a state-of-the-art
model-based approach. Particularly, using a model based approach
for large-scale open areas with multiple sensors is very difficult as
it requires mapping multiple sensors to a single room/model state.
By contrast, the proposed method is model agnostic and provides
the optimal selection of sensors independently of the underlying
model. Thus, even for the case of large-scale open areas with mul-
tiple sensors, the method will evaluate nonlinear relations from
the sensors and select those sensors that maximize the system
information.

Finally, a third potential limitation of the case study is that the
study only provides the optimal sensors on average. In particular,
although buildings employ different working regimes, e.g. day
and night, and each mode might require different number of sen-
sors, the case study only considers the optimal number of sensors
when all modes are considered. That being said, this is not a limi-
tation of the model but a limitation of the case study. In fact, the
Fig. 6. HSIC readings for the pairs of sensors in the south area of the twin house. The lab
children’s room, living room, bathroom, and bedroom).
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advantage of the method is that, in a data driven way, without
prior knowledge of the occupancy and heating schemes, the
method can learn these patterns from probability distributions -
it will be able to group the sensors that vary more during the
day from the sensors that vary more during the night.

5. Results

In this section, we will present the results of applying our
methodology to the two case studies. Since the twin–house setup
has only two isolated thermal zones, we first use the statistical test
method with this data to verify whether it can indeed detect the
two thermal zones. Subsequently, we apply the sensor selection
procedure on the BOPTEST building.

5.1. Twin-house

Applying the statistical testing method to the twin-house data
reveals the following observations (see Fig. 6)

� We cannot claim dependence between the heat inputs of the
south zones and the temperatures of the north zones (p-value
> 0:8), i.e., we observe that the null hypothesis (4) cannot be
rejected. These pairs of sensors are hence likely to be indepen-
dent. However the p-value is 0 for the heat inputs and the tem-
peratures in the south zones.

� For the temperature sensors, the p-values are 0, suggesting that
we cannot reject the null hypothesis that any of the sensor pairs
are independent. However, inspecting Fig. 6 reveals that the
HSIC is higher for the sensors pairwise with in north or with
in south zones. For a pair with one sensor from north and the
other from the south, the HSIC is considerably smaller.

Note that although from the illustration in Fig. 4, the rooms in the
North are thermally separated by walls, the sensors are found to
be dependent. This is because, as mentioned in Section 4.1, the tem-
peratures of the rooms in the north were maintained at 22 degrees.
The methodology has hence captured the correlation in the heating
methods used for the three rooms.

The results from the statistical test show that the probabilistic
dependence of each sensor on the other is similar, and based on
the proximity of the values, they can thus not be ranked in a statis-
tically meaningful way for importance. Hence, with in controlled
thermal zone (containing living room, bathroom and children’s
room) in the south, if only two (out of three) sensors were to be
el of each of the markers shows the first three letters of the zone (kitchen, doorway,



Table 1
HSIC and Kalman rank for BOPTEST.

Data set 1 sensor 2 sensors 3 sensors 4 sensors

Baseline HSIC East East East East
South South South

North North
West

Kalman rank 2 1 1 1

1 day HSIC West West West West
South South South

North North
East

Kalman rank 1 1 2 1

Constant HSIC West West West West
South South South

North North
East

Kalman rank 1 1 2 1

Random HSIC Core Core Core Core
South South South

North North
East

Kalman rank 4 7 5 2
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retained, the results suggest that any of the three sensors can be
removed. It is important to note that for accurate tracking of com-
fort, at least one sensor should be retained in each of the isolated
thermal zones (one in north and one in south in this case).

Fig. 6 shows that the HSIC of the kitchen, doorway and parent’s
room are much higher than their HSICs with other rooms. Likewise,
the HSIC of bathroom, children’s room and living room are again
much higher than their HSICs with other rooms. We are hence able
to clearly identify the thermal zones without having prior knowl-
edge of the building.

Although these results seem straightforward for a simple build-
ing like the one of this experiment, they suggest that the proposed
methodology might be able to distinguish between areas with dif-
ferent thermal regimes for large-scale buildings. In particular, con-
sidering the Oðn2Þ computational complexity of the model (with n
being the number of sensors), the proposed approach should easily
scale to other applications even if they are based on large-scale
buildings. Ideally, one would test such an assumption by analyzing
the behavior of the algorithm for a large-scale example; as this is
out of the scope of this paper, we leave such a study as future
research.

5.2. BOPTEST variable air volume building

Here we present the results of applying the novel methodology
on the data from the building described in Section 4.2. For all data
sets investigated, the statistical tests showed that the sensors are
all dependent on each other. This means that all the thermal zones
are connected to one-another. We thus look at the HSIC value and
apply Algorithm1.

To evaluate the method, we compare each subset selection S
given by the proposed method with the rank obtained by the
selected subset S using the grey-box models with Kalman filter,
e.g. if the rank of the subset using the Kalman method is 1, the pro-
posed method and the Kalman method agree 100%. To build a rank
for the Kalman filter method, we consider all possible subsets of
sensors and we rank them by their RMSE value. The results are pre-
sented in Table 1. The following analysis can be made.

� For 3 of the 4 data sets (baseline, 1 day, and constant), the
method is in perfect agreement with the Kalman method. In
particular, the ranking of the Kalman method is 1 in 75% of
9

the cases and 2 in the remaining 25%. However, the RMSE dif-
ference between the ranks 1 and 2 are usually not significant
(< 0:01 in RMSE), especially considering that for the 2 and 3
sensor cases there are 12 possible choices.

� While the proposed method disagrees with the Kalman method
in the case of the random data set, this behavior is expected as
the data set is very unrealistic and does not represent real life
conditions in the building. Particularly, unlike the three other
data sets that are based on typical HVAC settings, the random
data set is driven by a very a-typical data set that breaks the
usual behavior of the thermal interaction between the zones.
Moreover, due to this unusual data set, the RMSE’s of the Kal-
man method for the random data set are comparatively large
and are not reliable in this case to establish meaningful ranks.
Nonetheless, the statistical method is still able to give a reason-
able estimate of the sensor combination, where except for the
first sensor to be retained, the subsequent sensors are chosen
in the same order as the other cases.

6. Conclusions

This paper describes, evaluates and validates a data-driven
model free approach to rank the importance of sensor locations,
and hence an advice system for the placement/eventual mainte-
nance of the sensors. The approach has several advantages: it can
be deployed expert free, requires less computational time and is
more generalizable than the model-based approaches. Validation
was performed in two case studies, and different data sets against
a well-knownmethodology based on grey-box models and Kalman
filters. It is shown that the novel approach based on HSIC and sta-
tistical tests can reliably identify connected thermal zones, and fur-
ther rank them in the order of priority for scheduled maintenance.

As future research, firstly, we will validate the proposed
approach in large-scale buildings. Such a study was out of the
scope of this paper because we did not have benchmark methods
for large-scale buildings. Thus, as future research we will propose
alternative methods for validation and test the proposed approach
for buildings with a larger number of sensors. Additionally, we will
extend the method to evaluate the value of adding an extra sensor.
While the current method answers the sensor placement question
of which sensors can be removed, one could potentially use the
method in combination with a state estimation model (that esti-
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mates hidden states) or detailed white box models that can gener-
ate sensor data, to identify where sensors can be placed next. This
can also be potentially supplemented with other absolute metrics
for information gain w.r.t adding sensors such as Fischer informa-
tion matrix, confidence interval and entropy studies to give a bet-
ter view on the minimum number of sensors to be retained in a
building.
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